These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 22791045)
1. Application of nested PCR-DGGE (denaturing gradient gel electrophoresis) for the analysis of ciliate communities in soils. Shimano S; Sambe M; Kasahara Y Microbes Environ; 2012; 27(2):136-41. PubMed ID: 22791045 [TBL] [Abstract][Full Text] [Related]
2. Phylogeny of intestinal ciliates, including Charonina ventriculi, and comparison of microscopy and 18S rRNA gene pyrosequencing for rumen ciliate community structure analysis. Kittelmann S; Devente SR; Kirk MR; Seedorf H; Dehority BA; Janssen PH Appl Environ Microbiol; 2015 Apr; 81(7):2433-44. PubMed ID: 25616800 [TBL] [Abstract][Full Text] [Related]
3. Cultivation-independent analysis reveals a shift in ciliate 18S rRNA gene diversity in a polycyclic aromatic hydrocarbon-polluted soil. Lara E; Berney C; Harms H; Chatzinotas A FEMS Microbiol Ecol; 2007 Dec; 62(3):365-73. PubMed ID: 17949434 [TBL] [Abstract][Full Text] [Related]
4. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows. Zhang J; Zhao S; Zhang Y; Sun P; Bu D; Wang J Curr Microbiol; 2015 Dec; 71(6):650-7. PubMed ID: 26319789 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. van Elsas JD; Duarte GF; Keijzer-Wolters A; Smit E J Microbiol Methods; 2000 Dec; 43(2):133-51. PubMed ID: 11121612 [TBL] [Abstract][Full Text] [Related]
6. Application of the denaturing gradient gel electrophoresis (DGGE) technique as an efficient diagnostic tool for ciliate communities in soil. Jousset A; Lara E; Nikolausz M; Harms H; Chatzinotas A Sci Total Environ; 2010 Feb; 408(5):1221-5. PubMed ID: 19896703 [TBL] [Abstract][Full Text] [Related]
7. Biodiversity patterns of soil ciliates along salinity gradients. Zhao F; Xu K Eur J Protistol; 2016 Apr; 53():1-10. PubMed ID: 26773903 [TBL] [Abstract][Full Text] [Related]
8. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection. Stock A; Edgcomb V; Orsi W; Filker S; Breiner HW; Yakimov MM; Stoeck T BMC Microbiol; 2013 Jul; 13():150. PubMed ID: 23834625 [TBL] [Abstract][Full Text] [Related]
9. A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities. Oros-Sichler M; Gomes NC; Neuber G; Smalla K J Microbiol Methods; 2006 Apr; 65(1):63-75. PubMed ID: 16102860 [TBL] [Abstract][Full Text] [Related]
10. Soil clone library analyses to evaluate specificity and selectivity of PCR primers targeting fungal 18S rDNA for denaturing-gradient gel electrophoresis (DGGE). Takada Hoshino Y; Morimoto S Microbes Environ; 2010; 25(4):281-7. PubMed ID: 21576883 [TBL] [Abstract][Full Text] [Related]
11. Molecular characterization of ciliate diversity in stream biofilms. Dopheide A; Lear G; Stott R; Lewis G Appl Environ Microbiol; 2008 Mar; 74(6):1740-7. PubMed ID: 18223112 [TBL] [Abstract][Full Text] [Related]
13. Two functionally distinct ciliates dwelling in Acropora corals in the South China Sea near Sanya, Hainan Province, China. Qiu D; Huang L; Huang H; Yang J; Lin S Appl Environ Microbiol; 2010 Aug; 76(16):5639-43. PubMed ID: 20581178 [TBL] [Abstract][Full Text] [Related]
14. Phylogeny of the order Tintinnida (Ciliophora, Spirotrichea) inferred from small- and large-subunit rRNA genes. Santoferrara LF; McManus GB; Alder VA J Eukaryot Microbiol; 2012; 59(4):423-6. PubMed ID: 22624498 [TBL] [Abstract][Full Text] [Related]
15. Spatio-temporal variations in the molecular diversity of microeukaryotes in particular ciliates in soil of the Yellow River delta, China. Zhao F; Xu K; Zhang D J Eukaryot Microbiol; 2013; 60(3):282-90. PubMed ID: 23531052 [TBL] [Abstract][Full Text] [Related]
16. Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR-DGGE fingerprinting. Vanbroekhoven K; Ryngaert A; Wattiau P; Mot R; Springael D FEMS Microbiol Ecol; 2004 Oct; 50(1):37-50. PubMed ID: 19712375 [TBL] [Abstract][Full Text] [Related]
17. Morphological and ribosomal DNA-based characterization of six Antarctic ciliate morphospecies from the Amundsen Sea with phylogenetic analyses. Kim SY; Choi JK; Dolan JR; Shin HC; Lee S; Yang EJ J Eukaryot Microbiol; 2013; 60(5):497-513. PubMed ID: 23865618 [TBL] [Abstract][Full Text] [Related]
18. Diversity and distributional patterns of ciliates in Guaymas Basin hydrothermal vent sediments. Coyne KJ; Countway PD; Pilditch CA; Lee CK; Caron DA; Cary SC J Eukaryot Microbiol; 2013; 60(5):433-47. PubMed ID: 23750565 [TBL] [Abstract][Full Text] [Related]
19. Microbial genetic diversity and ciliate community structure along an environmental gradient in coastal soil. Zhao F; Xu K Eur J Protistol; 2013 Nov; 49(4):516-25. PubMed ID: 23639872 [TBL] [Abstract][Full Text] [Related]
20. Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18s rDNA. Kowalchuk GA; Gerards S; Woldendorp JW Appl Environ Microbiol; 1997 Oct; 63(10):3858-65. PubMed ID: 9327549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]