These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 22791082)
1. Quantitative performance of advanced resolution recovery strategies on SPECT images: evaluation with use of digital phantom models. Onishi H; Motomura N; Fujino K; Natsume T; Haramoto Y Radiol Phys Technol; 2013 Jan; 6(1):42-53. PubMed ID: 22791082 [TBL] [Abstract][Full Text] [Related]
2. Optimization of iterative reconstruction parameters with attenuation correction, scatter correction and resolution recovery in myocardial perfusion SPECT/CT. Okuda K; Nakajima K; Yamada M; Wakabayashi H; Ichikawa H; Arai H; Matsuo S; Taki J; Hashimoto M; Kinuya S Ann Nucl Med; 2014 Jan; 28(1):60-8. PubMed ID: 24214735 [TBL] [Abstract][Full Text] [Related]
3. Impact of Resolution Recovery in Quantitative Ismail FS; Mansor S J Med Imaging Radiat Sci; 2019 Sep; 50(3):449-453. PubMed ID: 31320272 [TBL] [Abstract][Full Text] [Related]
4. The influence of resolution recovery by using collimator detector response during 3D OSEM image reconstruction on (99m)Tc-ECD brain SPET images. Kalantari F; Rajabi H; Ay MR; Razavi-Ratki SK; Fard-Esfahani A; Beiki D; Eftekhari M; Fallahi B; Sadeghian L; Emami-Ardekani A Hell J Nucl Med; 2012; 15(2):92-7. PubMed ID: 22741145 [TBL] [Abstract][Full Text] [Related]
5. Characterization of ordered-subsets expectation maximization with 3D post-reconstruction Gauss filtering and comparison with filtered backprojection in 99mTc SPECT. Brambilla M; Cannillo B; Dominietto M; Leva L; Secco C; Inglese E Ann Nucl Med; 2005 Apr; 19(2):75-82. PubMed ID: 15909485 [TBL] [Abstract][Full Text] [Related]
6. Performance evaluation of OSEM reconstruction algorithm incorporating three-dimensional distance-dependent resolution compensation for brain SPECT: a simulation study. Yokoi T; Shinohara H; Onishi H Ann Nucl Med; 2002 Feb; 16(1):11-8. PubMed ID: 11922203 [TBL] [Abstract][Full Text] [Related]
7. Quantification and reduction of the collimator-detector response effect in SPECT by applying a system model during iterative image reconstruction: a simulation study. Kalantari F; Rajabi H; Saghari M Nucl Med Commun; 2012 Mar; 33(3):228-38. PubMed ID: 22134173 [TBL] [Abstract][Full Text] [Related]
8. Performance of 3DOSEM and MAP algorithms for reconstructing low count SPECT acquisitions. Grootjans W; Meeuwis AP; Slump CH; de Geus-Oei LF; Gotthardt M; Visser EP Z Med Phys; 2016 Dec; 26(4):311-322. PubMed ID: 26725165 [TBL] [Abstract][Full Text] [Related]
9. Adaptive Autoregressive Model for Reduction of Noise in SPECT. Takalo R; Hytti H; Ihalainen H; Sohlberg A Comput Math Methods Med; 2015; 2015():494691. PubMed ID: 26089966 [TBL] [Abstract][Full Text] [Related]
10. Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals. Cheng JC; Shoghi K; Laforest R Med Phys; 2012 Feb; 39(2):1029-41. PubMed ID: 22320813 [TBL] [Abstract][Full Text] [Related]
11. Texture analysis for automated evaluation of Jaszczak phantom SPECT system tests. Nichols KJ; DiFilippo FP; Palestro CJ Med Phys; 2019 Jan; 46(1):262-272. PubMed ID: 30418674 [TBL] [Abstract][Full Text] [Related]
13. [Evaluation of the Number of Sampling Angles in Three Dimensional Ordered Subset Expectation Maximization: Comparison of Step and Shoot Acquisition and Continuous Acquisition]. Awamoto E; Awamoto S; Himuro K; Tsutsui Y; Noguchi Y; Komiya I Nihon Hoshasen Gijutsu Gakkai Zasshi; 2020; 76(5):491-499. PubMed ID: 32435033 [TBL] [Abstract][Full Text] [Related]
14. Optimization of iterative reconstruction parameters with 3-dimensional resolution recovery, scatter and attenuation correction in ¹²³I-FP-CIT SPECT. Matsutomo N; Nagaki A; Yamao F; Sasaki M Ann Nucl Med; 2015 Aug; 29(7):636-42. PubMed ID: 25997807 [TBL] [Abstract][Full Text] [Related]
15. Performance of compressed sensing-based iterative reconstruction for single-photon emission computed tomography from undersampled projection data: a simulation study in 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane imaging. Matsutomo N; Fukaya K; Hashimoto T; Yamamoto T; Sato E Nucl Med Commun; 2019 Feb; 40(2):106-114. PubMed ID: 30362988 [TBL] [Abstract][Full Text] [Related]
16. A 3-dimensional mathematic cylinder phantom for the evaluation of the fundamental performance of SPECT. Onishi H; Motomura N; Takahashi M; Yanagisawa M; Ogawa K J Nucl Med Technol; 2010 Mar; 38(1):42-8. PubMed ID: 20159932 [TBL] [Abstract][Full Text] [Related]
17. [Evaluation of Post-reconstruction Filtering in Resolution Recovery Reconstruction for Bone SPECT Imaging]. Nakashima M; Kangai Y Nihon Hoshasen Gijutsu Gakkai Zasshi; 2020; 76(10):1025-1034. PubMed ID: 33087648 [TBL] [Abstract][Full Text] [Related]
18. [Evaluation of commercial resolution recovery techniques in four state-of-the-art single photon emission computed tomography systems using a digital phantom model]. Onishi H; Motomura N; Fujino K; Natsume T; Haramoto Y Nihon Hoshasen Gijutsu Gakkai Zasshi; 2012; 68(6):686-96. PubMed ID: 22805445 [TBL] [Abstract][Full Text] [Related]
19. Pediatric 99mTc-DMSA SPECT performed by using iterative reconstruction with isotropic resolution recovery: improved image quality and reduced radiopharmaceutical activity. Sheehy N; Tetrault TA; Zurakowski D; Vija AH; Fahey FH; Treves ST Radiology; 2009 May; 251(2):511-6. PubMed ID: 19304919 [TBL] [Abstract][Full Text] [Related]
20. Performance of SwiftScan planar and SPECT technology using low-energy high-resolution and sensitivity collimator compared with Siemens SPECT system. Shibutani T; Onoguchi M; Yoneyama H; Konishi T; Nakajima K Nucl Med Commun; 2021 Jul; 42(7):732-737. PubMed ID: 33741862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]