BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22791446)

  • 21. [Comparison of two kinds of cationic vectors-mediated gene delivery].
    Zhi DF; Wang B; Cui SH; Yang BL; Zhao BD; Zhao YN; Jiang YX; Yu SJ; Zhang SB
    Yao Xue Xue Bao; 2009 May; 44(5):553-7. PubMed ID: 19618735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of a new non-viral vector for transfection: Eudragit nanoparticles for the delivery of a DNA plasmid.
    Gargouri M; Sapin A; Bouli S; Becuwe P; Merlin JL; Maincent P
    Technol Cancer Res Treat; 2009 Dec; 8(6):433-44. PubMed ID: 19925027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholesterol domains in cationic lipid/DNA complexes improve transfection.
    Xu L; Anchordoquy TJ
    Biochim Biophys Acta; 2008 Oct; 1778(10):2177-81. PubMed ID: 18489900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipid peptide nanocomplexes for gene delivery and magnetic resonance imaging in the brain.
    Writer MJ; Kyrtatos PG; Bienemann AS; Pugh JA; Lowe AS; Villegas-Llerena C; Kenny GD; White EA; Gill SS; McLeod CW; Lythgoe MF; Hart SL
    J Control Release; 2012 Sep; 162(2):340-8. PubMed ID: 22800579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved intracellular delivery of peptide- and lipid-nanoplexes by natural glycosides.
    Weng A; Manunta MD; Thakur M; Gilabert-Oriol R; Tagalakis AD; Eddaoudi A; Munye MM; Vink CA; Wiesner B; Eichhorst J; Melzig MF; Hart SL
    J Control Release; 2015 May; 206():75-90. PubMed ID: 25758332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipopolyplex ternary delivery systems incorporating C14 glycerol-based lipids.
    Kudsiova L; Fridrich B; Ho J; Mustapa MF; Campbell F; Welser K; Keppler M; Ng T; Barlow DJ; Tabor AB; Hailes HC; Lawrence MJ
    Mol Pharm; 2011 Oct; 8(5):1831-47. PubMed ID: 21815622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Transfection efficiency comparison of cationic liposome-DNA complexes and lipid-protamine-DNA complexes in vitro].
    Sun X; Tian L; Nie Y; Zhang Z; Lu J; Wei Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):191-5. PubMed ID: 17333920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solid lipid nanoparticles: formulation factors affecting cell transfection capacity.
    del Pozo-Rodríguez A; Delgado D; Solinís MA; Gascón AR; Pedraz JL
    Int J Pharm; 2007 Jul; 339(1-2):261-8. PubMed ID: 17467205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles.
    Vighi E; Ruozi B; Montanari M; Battini R; Leo E
    Int J Pharm; 2010 Apr; 389(1-2):254-61. PubMed ID: 20100555
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structures of lipid-DNA complexes: supramolecular assembly and gene delivery.
    Safinya CR
    Curr Opin Struct Biol; 2001 Aug; 11(4):440-8. PubMed ID: 11495736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New gene delivery system based on oligochitosan and solid lipid nanoparticles: 'in vitro' and 'in vivo' evaluation.
    Delgado D; del Pozo-Rodríguez A; Angeles Solinís M; Bartkowiak A; Rodríguez-Gascón A
    Eur J Pharm Sci; 2013 Nov; 50(3-4):484-91. PubMed ID: 23981333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The enhancement of transfection efficiency of cationic liposomes by didodecyldimethylammonium bromide coated gold nanoparticles.
    Li D; Li G; Li P; Zhang L; Liu Z; Wang J; Wang E
    Biomaterials; 2010 Mar; 31(7):1850-7. PubMed ID: 19945155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipopolyplexes as nanomedicines for therapeutic gene delivery.
    García L; Urbiola K; Düzgüneş N; Tros de Ilarduya C
    Methods Enzymol; 2012; 509():327-38. PubMed ID: 22568913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes.
    Hyndman L; Lemoine JL; Huang L; Porteous DJ; Boyd AC; Nan X
    J Control Release; 2004 Oct; 99(3):435-44. PubMed ID: 15451601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solid lipid nanoparticles as potential tools for gene therapy: in vivo protein expression after intravenous administration.
    del Pozo-Rodríguez A; Delgado D; Solinís MA; Pedraz JL; Echevarría E; Rodríguez JM; Gascón AR
    Int J Pharm; 2010 Jan; 385(1-2):157-62. PubMed ID: 19835940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective targeting capability acquired with a protein corona adsorbed on the surface of 1,2-dioleoyl-3-trimethylammonium propane/DNA nanoparticles.
    Caracciolo G; Cardarelli F; Pozzi D; Salomone F; Maccari G; Bardi G; Capriotti AL; Cavaliere C; Papi M; Laganà A
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13171-9. PubMed ID: 24245615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. siRNA delivery by a transferrin-associated lipid-based vector: a non-viral strategy to mediate gene silencing.
    Cardoso AL; Simões S; de Almeida LP; Pelisek J; Culmsee C; Wagner E; Pedroso de Lima MC
    J Gene Med; 2007 Mar; 9(3):170-83. PubMed ID: 17351968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced transfection efficiency and reduced cytotoxicity of novel lipid-polymer hybrid nanoplexes.
    Jain S; Kumar S; Agrawal AK; Thanki K; Banerjee UC
    Mol Pharm; 2013 Jun; 10(6):2416-25. PubMed ID: 23597269
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery.
    He Z; Hu Y; Nie T; Tang H; Zhu J; Chen K; Liu L; Leong KW; Chen Y; Mao HQ
    Acta Biomater; 2018 Nov; 81():195-207. PubMed ID: 30267888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid nanoparticles for gene delivery.
    Zhao Y; Huang L
    Adv Genet; 2014; 88():13-36. PubMed ID: 25409602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.