BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 22791605)

  • 1. Antigenic analysis of highly pathogenic avian influenza virus H5N1 sublineages co-circulating in Egypt.
    Watanabe Y; Ibrahim MS; Ellakany HF; Kawashita N; Daidoji T; Takagi T; Yasunaga T; Nakaya T; Ikuta K
    J Gen Virol; 2012 Oct; 93(Pt 10):2215-2226. PubMed ID: 22791605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antigenic analysis of H5N1 highly pathogenic avian influenza viruses circulating in Egypt (2006-2012).
    Ibrahim M; Eladl AH; Sultan HA; Arafa AS; Abdel Razik AG; Abd El Rahman S; El-Azm KI; Saif YM; Lee CW
    Vet Microbiol; 2013 Dec; 167(3-4):651-61. PubMed ID: 24139721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of broadly reactive H5N1 vaccine against different Egyptian H5N1 viruses.
    Ibrahim M; Sultan HA; Razik AG; Kang KI; Arafa AS; Shehata AA; Saif YM; Lee CW
    Vaccine; 2015 May; 33(23):2670-7. PubMed ID: 25910922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative efficacy of North American and antigenically matched reverse genetics derived H5N9 DIVA marker vaccines against highly pathogenic Asian H5N1 avian influenza viruses in chickens.
    Jadhao SJ; Lee CW; Sylte M; Suarez DL
    Vaccine; 2009 Oct; 27(44):6247-60. PubMed ID: 19686695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular and antigenic survey of H5N1 highly pathogenic avian influenza virus isolates from smallholder duck farms in Central Java, Indonesia during 2007-2008.
    Wibawa H; Henning J; Wong F; Selleck P; Junaidi A; Bingham J; Daniels P; Meers J
    Virol J; 2011 Sep; 8():425. PubMed ID: 21896207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic versus antigenic differences among highly pathogenic H5N1 avian influenza A viruses: Consequences for vaccine strain selection.
    Peeters B; Reemers S; Dortmans J; de Vries E; de Jong M; van de Zande S; Rottier PJM; de Haan CAM
    Virology; 2017 Mar; 503():83-93. PubMed ID: 28135661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antigenic diversity and cross-reactivity of avian influenza H5N1 viruses in Egypt between 2006 and 2011.
    El-Shesheny R; Kayali G; Kandeil A; Cai Z; Barakat AB; Ghanim H; Ali MA
    J Gen Virol; 2012 Dec; 93(Pt 12):2564-2574. PubMed ID: 22956735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antigenic drift in H5N1 avian influenza virus in poultry is driven by mutations in major antigenic sites of the hemagglutinin molecule analogous to those for human influenza virus.
    Cattoli G; Milani A; Temperton N; Zecchin B; Buratin A; Molesti E; Aly MM; Arafa A; Capua I
    J Virol; 2011 Sep; 85(17):8718-24. PubMed ID: 21734057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antigenic characterization of recent H5N1 highly pathogenic avian influenza viruses circulating in Egyptian poultry.
    Beato MS; Mancin M; Yang J; Buratin A; Ruffa M; Maniero S; Fusaro A; Terregino C; Wan XF; Capua I
    Virology; 2013 Jan; 435(2):350-6. PubMed ID: 23123011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epidemiological findings of outbreaks of disease caused by highly pathogenic H5N1 avian influenza virus in poultry in Egypt during 2006.
    Aly MM; Arafa A; Hassan MK
    Avian Dis; 2008 Jun; 52(2):269-77. PubMed ID: 18646456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of a highly pathogenic H5N1 avian influenza A virus during an outbreak in vaccinated chickens in Egypt.
    Amen O; Vemula SV; Zhao J; Ibrahim R; Hussein A; Hewlett IK; Moussa S; Mittal SK
    Virus Res; 2015 Dec; 210():337-43. PubMed ID: 26363196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosylation and an amino acid insertion in the head of hemagglutinin independently affect the antigenic properties of H5N1 avian influenza viruses.
    Gu C; Zeng X; Song Y; Li Y; Liu L; Kawaoka Y; Zhao D; Chen H
    Sci China Life Sci; 2019 Jan; 62(1):76-83. PubMed ID: 30515728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse engineering the antigenic architecture of the haemagglutinin from influenza H5N1 clade 1 and 2.2 viruses with fine epitope mapping using monoclonal antibodies.
    Rockman S; Camuglia S; Vandenberg K; Ong C; Baker MA; Nation RL; Li J; Velkov T
    Mol Immunol; 2013 Apr; 53(4):435-42. PubMed ID: 23127859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylodynamics of avian influenza clade 2.2.1 H5N1 viruses in Egypt.
    Arafa A; El-Masry I; Kholosy S; Hassan MK; Dauphin G; Lubroth J; Makonnen YJ
    Virol J; 2016 Mar; 13():49. PubMed ID: 27000533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for differing evolutionary dynamics of A/H5N1 viruses among countries applying or not applying avian influenza vaccination in poultry.
    Cattoli G; Fusaro A; Monne I; Coven F; Joannis T; El-Hamid HS; Hussein AA; Cornelius C; Amarin NM; Mancin M; Holmes EC; Capua I
    Vaccine; 2011 Nov; 29(50):9368-75. PubMed ID: 22001877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid substitutions in antigenic region B of hemagglutinin play a critical role in the antigenic drift of subclade 2.3.4.4 highly pathogenic H5NX influenza viruses.
    Li J; Gu M; Liu K; Gao R; Sun W; Liu D; Jiang K; Zhong L; Wang X; Hu J; Hu S; Liu X; Shi W; Ren H; Peng D; Jiao X; Liu X
    Transbound Emerg Dis; 2020 Jan; 67(1):263-275. PubMed ID: 31484213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt.
    Watanabe Y; Ibrahim MS; Ellakany HF; Kawashita N; Mizuike R; Hiramatsu H; Sriwilaijaroen N; Takagi T; Suzuki Y; Ikuta K
    PLoS Pathog; 2011 May; 7(5):e1002068. PubMed ID: 21637809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antigenic variation of clade 2.1 H5N1 virus is determined by a few amino acid substitutions immediately adjacent to the receptor binding site.
    Koel BF; van der Vliet S; Burke DF; Bestebroer TM; Bharoto EE; Yasa IW; Herliana I; Laksono BM; Xu K; Skepner E; Russell CA; Rimmelzwaan GF; Perez DR; Osterhaus AD; Smith DJ; Prajitno TY; Fouchier RA
    mBio; 2014 Jun; 5(3):e01070-14. PubMed ID: 24917596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progressive glycosylation of the haemagglutinin of avian influenza H5N1 modulates virus replication, virulence and chicken-to-chicken transmission without significant impact on antigenic drift.
    Abdelwhab EM; Veits J; Tauscher K; Ziller M; Grund C; Hassan MK; Shaheen M; Harder TC; Teifke J; Stech J; Mettenleiter TC
    J Gen Virol; 2016 Dec; 97(12):3193-3204. PubMed ID: 27902339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.
    Hagag IT; Mansour SM; Zhang Z; Ali AA; Ismaiel el-BM; Salama AA; Cardona CJ; Collins J; Xing Z
    PLoS One; 2015; 10(5):e0120061. PubMed ID: 25962145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.