BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 22791894)

  • 1. Type II phosphatidylinositol 4-kinase regulates trafficking of secretory granule proteins in Drosophila.
    Burgess J; Del Bel LM; Ma CI; Barylko B; Polevoy G; Rollins J; Albanesi JP; Krämer H; Brill JA
    Development; 2012 Aug; 139(16):3040-50. PubMed ID: 22791894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An early endosome-derived retrograde trafficking pathway promotes secretory granule maturation.
    Ma CJ; Yang Y; Kim T; Chen CH; Polevoy G; Vissa M; Burgess J; Brill JA
    J Cell Biol; 2020 Mar; 219(3):. PubMed ID: 32045479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mistargeting of secretory cargo in retromer-deficient cells.
    Neuman SD; Terry EL; Selegue JE; Cavanagh AT; Bashirullah A
    Dis Model Mech; 2021 Jan; 14(1):. PubMed ID: 33380435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hobbit regulates intracellular trafficking to drive insulin-dependent growth during
    Neuman SD; Bashirullah A
    Development; 2018 Jun; 145(11):. PubMed ID: 29891564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Type II phosphatidylinositol 4-kinase regulates nerve terminal growth and synaptic vesicle recycling.
    Cantarutti KC; Burgess J; Brill JA; Dason JS
    J Neurogenet; 2018 Sep; 32(3):230-235. PubMed ID: 30175671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AP-1 and clathrin are essential for secretory granule biogenesis in Drosophila.
    Burgess J; Jauregui M; Tan J; Rollins J; Lallet S; Leventis PA; Boulianne GL; Chang HC; Le Borgne R; Krämer H; Brill JA
    Mol Biol Cell; 2011 Jun; 22(12):2094-105. PubMed ID: 21490149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of developmentally programmed crinophagy in
    Csizmadia T; Lőrincz P; Hegedűs K; Széplaki S; Lőw P; Juhász G
    J Cell Biol; 2018 Jan; 217(1):361-374. PubMed ID: 29066608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual roles for the Drosophila PI 4-kinase four wheel drive in localizing Rab11 during cytokinesis.
    Polevoy G; Wei HC; Wong R; Szentpetery Z; Kim YJ; Goldbach P; Steinbach SK; Balla T; Brill JA
    J Cell Biol; 2009 Dec; 187(6):847-58. PubMed ID: 19995935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actin puts the squeeze on Drosophila glue secretion.
    Merrifield CJ
    Nat Cell Biol; 2016 Feb; 18(2):142-4. PubMed ID: 26820438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental program-independent secretory granule degradation in larval salivary gland cells of Drosophila.
    Csizmadia T; Dósa A; Farkas E; Csikos BV; Kriska EA; Juhász G; Lőw P
    Traffic; 2022 Dec; 23(12):568-586. PubMed ID: 36353974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orchestrated content release from Drosophila glue-protein vesicles by a contractile actomyosin network.
    Rousso T; Schejter ED; Shilo BZ
    Nat Cell Biol; 2016 Feb; 18(2):181-90. PubMed ID: 26641716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rab26 controls secretory granule maturation and breakdown in Drosophila.
    Boda A; Varga LP; Nagy A; Szenci G; Csizmadia T; Lőrincz P; Juhász G
    Cell Mol Life Sci; 2023 Jan; 80(1):24. PubMed ID: 36600084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rab6 Is Required for Multiple Apical Transport Pathways but Not the Basolateral Transport Pathway in Drosophila Photoreceptors.
    Iwanami N; Nakamura Y; Satoh T; Liu Z; Satoh AK
    PLoS Genet; 2016 Feb; 12(2):e1005828. PubMed ID: 26890939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tango1 coordinates the formation of endoplasmic reticulum/Golgi docking sites to mediate secretory granule formation.
    Reynolds HM; Zhang L; Tran DT; Ten Hagen KG
    J Biol Chem; 2019 Dec; 294(51):19498-19510. PubMed ID: 31690624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway.
    Mao D; Lin G; Tepe B; Zuo Z; Tan KL; Senturk M; Zhang S; Arenkiel BR; Sardiello M; Bellen HJ
    Autophagy; 2019 Jul; 15(7):1214-1233. PubMed ID: 30741620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecdysone receptor isoform specific regulation of secretory granule acidification in the larval Drosophila salivary gland.
    Nagy A; Szenci G; Boda A; Al-Lami M; Csizmadia T; Lőrincz P; Juhász G; Lőw P
    Eur J Cell Biol; 2022; 101(4):151279. PubMed ID: 36306596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of tbc1 in Drosophila embryonic salivary glands.
    Johnson DM; Andrew DJ
    BMC Mol Cell Biol; 2019 Jun; 20(1):19. PubMed ID: 31242864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergence of secretory, endosomal, and autophagic routes in trans-Golgi-associated lysosomes.
    Zhou L; Xue X; Yang K; Feng Z; Liu M; Pastor-Pareja JC
    J Cell Biol; 2023 Jan; 222(1):. PubMed ID: 36239631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel function for Rab1 and Rab11 during secretory granule maturation.
    Neuman SD; Lee AR; Selegue JE; Cavanagh AT; Bashirullah A
    J Cell Sci; 2021 Aug; 134(15):. PubMed ID: 34342349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster.
    Sriram V; Krishnan KS; Mayor S
    J Cell Biol; 2003 May; 161(3):593-607. PubMed ID: 12743107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.