These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22791924)

  • 21. Organic amendment additions to rangelands: A meta-analysis of multiple ecosystem outcomes.
    Gravuer K; Gennet S; Throop HL
    Glob Chang Biol; 2019 Mar; 25(3):1152-1170. PubMed ID: 30604474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soil amendments alter cadmium distribution and bacterial community structure in paddy soils.
    Li Q; Chang J; Li L; Lin X; Li Y
    Sci Total Environ; 2024 May; 924():171399. PubMed ID: 38458464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nematode-Suppressive Potential of Digestates to
    Liu K; Eberlein C; Edalati A; Zhang R; Westphal A
    Plant Dis; 2023 Aug; 107(8):2384-2394. PubMed ID: 36627810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Management of Reniform Nematode in Cotton Using Winter Crop Residue Amendments Under Greenhouse Conditions.
    Sandoval-Ruiz R; Grabau ZJ
    J Nematol; 2023 Feb; 55(1):20230041. PubMed ID: 37868787
    [No Abstract]   [Full Text] [Related]  

  • 25. Investigating the effects of organic amendments on soil microbial composition and its linkage to soil organic carbon: A global meta-analysis.
    Cui J; Yang B; Zhang M; Song D; Xu X; Ai C; Liang G; Zhou W
    Sci Total Environ; 2023 Oct; 894():164899. PubMed ID: 37343853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plant Disease Management: Leveraging on the Plant-Microbe-Soil Interface in the Biorational Use of Organic Amendments.
    Akanmu AO; Babalola OO; Venturi V; Ayilara MS; Adeleke BS; Amoo AE; Sobowale AA; Fadiji AE; Glick BR
    Front Plant Sci; 2021; 12():700507. PubMed ID: 34394153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Getting to the root of the matter: Water-soluble and volatile components in thermally-treated biosolids and biochar differentially regulate maize (Zea mays) seedling growth.
    Backer R; Ghidotti M; Schwinghamer T; Saeed W; Grenier C; Dion-Laplante C; Fabbri D; Dutilleul P; Seguin P; Smith DL
    PLoS One; 2018; 13(11):e0206924. PubMed ID: 30388186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of compost and manure soil amendments on nematodes and on yields of potato and barley: a 7-year study.
    Kimpinski J; Gallant CE; Henry R; Macleod JA; Sanderson JB; Sturz AV
    J Nematol; 2003 Sep; 35(3):289-93. PubMed ID: 19262763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ORGANIC VS CONVENTIONAL: SOIL NEMATODE COMMUNITY STRUCTURE AND FUNCTION.
    Kapp C; Storey SG; Malan AP
    Commun Agric Appl Biol Sci; 2014; 79(2):297-300. PubMed ID: 26084108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Use of Biochar for Plant Pathogen Control.
    Poveda J; Martínez-Gómez Á; Fenoll C; Escobar C
    Phytopathology; 2021 Sep; 111(9):1490-1499. PubMed ID: 33529050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soil organic matter and management of plant-parasitic nematodes.
    Widmer TL; Mitkowski NA; Abawi GS
    J Nematol; 2002 Dec; 34(4):289-95. PubMed ID: 19265946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors associated with the suppressiveness of sugarcane soils to plant-parasitic nematodes.
    Stirling GR; Rames E; Stirling AM; Hamill S
    J Nematol; 2011 Sep; 43(3-4):135-48. PubMed ID: 23431051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions between Soil Bacterial Diversity and Plant-Parasitic Nematodes in Soybean Plants.
    Barros FMDR; Pedrinho A; Mendes LW; Freitas CCG; Andreote FD
    Appl Environ Microbiol; 2022 Sep; 88(17):e0096322. PubMed ID: 36000866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plants and Associated Soil Microbiota Cooperatively Suppress Plant-Parasitic Nematodes.
    Topalović O; Hussain M; Heuer H
    Front Microbiol; 2020; 11():313. PubMed ID: 32184773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Examine medicinal plants from South Africa for suppression of
    Khosa MC; Dube Z; De Waele D; Daneel MS
    J Nematol; 2020; 52():1-7. PubMed ID: 32270654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficacy of Organic Soil Amendments for Management of Heterodera glycines in Greenhouse Experiments.
    Grabau ZJ; Chen S
    J Nematol; 2014 Sep; 46(3):267-74. PubMed ID: 25276000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organic amendments to avocado crops induce suppressiveness and influence the composition and activity of soil microbial communities.
    Bonilla N; Vida C; Martínez-Alonso M; Landa BB; Gaju N; Cazorla FM; de Vicente A
    Appl Environ Microbiol; 2015 May; 81(10):3405-18. PubMed ID: 25769825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant-Soil Mediated Effects of Long-Term Warming on Soil Nematodes of Alpine Meadows on the Qinghai-Tibetan Plateau.
    Liu Y; Wang W; Liu P; Zhou H; Chen Z; Suonan J
    Biology (Basel); 2022 Oct; 11(11):. PubMed ID: 36358297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Characteristics of soil microbial and nematode communities under artificial Medicago sativa grasslands with different cultivation years in semi-arid region of Loess Plateau, Northwest China].
    Geng DZ; Huang JH; Huo N; Wang N; Yang PP; Zhao SW
    Ying Yong Sheng Tai Xue Bao; 2020 Apr; 31(4):1365-1377. PubMed ID: 32530213
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.