BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 22792059)

  • 21. Two-stage design of sequencing studies for testing association with rare variants.
    Yang F; Thomas DC
    Hum Hered; 2011; 71(4):209-20. PubMed ID: 21734405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of putative causal loci in whole-genome sequencing data via knockoff statistics.
    He Z; Liu L; Wang C; Le Guen Y; Lee J; Gogarten S; Lu F; Montgomery S; Tang H; Silverman EK; Cho MH; Greicius M; Ionita-Laza I
    Nat Commun; 2021 May; 12(1):3152. PubMed ID: 34035245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations.
    Teo YY; Sim X; Ong RT; Tan AK; Chen J; Tantoso E; Small KS; Ku CS; Lee EJ; Seielstad M; Chia KS
    Genome Res; 2009 Nov; 19(11):2154-62. PubMed ID: 19700652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate prediction of a minimal region around a genetic association signal that contains the causal variant.
    Bochdanovits Z; Simón-Sánchez J; Jonker M; Hoogendijk WJ; van der Vaart A; Heutink P
    Eur J Hum Genet; 2014 Feb; 22(2):238-42. PubMed ID: 23736218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthetic associations in the context of genome-wide association scan signals.
    Orozco G; Barrett JC; Zeggini E
    Hum Mol Genet; 2010 Oct; 19(R2):R137-44. PubMed ID: 20805105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supervariants identification for breast cancer.
    Hu J; Li T; Wang S; Zhang H
    Genet Epidemiol; 2020 Nov; 44(8):934-947. PubMed ID: 32808324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the Metabochip in diverse populations from the International HapMap Project in the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) project.
    Crawford DC; Goodloe R; Brown-Gentry K; Wilson S; Roberson J; Gillani NB; Ritchie MD; Dilks HH; Bush WS
    Pac Symp Biocomput; 2013; ():188-99. PubMed ID: 23424124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Limitations of the human reference genome for personalized genomics.
    Rosenfeld JA; Mason CE; Smith TM
    PLoS One; 2012; 7(7):e40294. PubMed ID: 22811759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Power comparison of admixture mapping and direct association analysis in genome-wide association studies.
    Qin H; Zhu X
    Genet Epidemiol; 2012 Apr; 36(3):235-43. PubMed ID: 22460597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pooled-DNA Sequencing for Elucidating New Genomic Risk Factors, Rare Variants Underlying Alzheimer's Disease.
    Jin SC; Benitez BA; Deming Y; Cruchaga C
    Methods Mol Biol; 2016; 1303():299-314. PubMed ID: 26235075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Are rare variants really independent?
    Turkmen A; Lin S
    Genet Epidemiol; 2017 May; 41(4):363-371. PubMed ID: 28300291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utilizing population controls in rare-variant case-parent association tests.
    Jiang Y; Satten GA; Han Y; Epstein MP; Heinzen EL; Goldstein DB; Allen AS
    Am J Hum Genet; 2014 Jun; 94(6):845-53. PubMed ID: 24836453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using Genomic Data to Find Disease-Modifying Loci in Huntington's Disease (HD).
    Holmans P; Stone T
    Methods Mol Biol; 2018; 1780():443-461. PubMed ID: 29856030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulating autosomal genotypes with realistic linkage disequilibrium and a spiked-in genetic effect.
    Shi M; Umbach DM; Wise AS; Weinberg CR
    BMC Bioinformatics; 2018 Jan; 19(1):2. PubMed ID: 29291710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Haplotype kernel association test as a powerful method to identify chromosomal regions harboring uncommon causal variants.
    Lin WY; Yi N; Lou XY; Zhi D; Zhang K; Gao G; Tiwari HK; Liu N
    Genet Epidemiol; 2013 Sep; 37(6):560-70. PubMed ID: 23740760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of cataloged variation between International HapMap Consortium and 1000 Genomes Project data.
    Buchanan CC; Torstenson ES; Bush WS; Ritchie MD
    J Am Med Inform Assoc; 2012; 19(2):289-94. PubMed ID: 22319179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transethnic differences in GWAS signals: A simulation study.
    Zanetti D; Weale ME
    Ann Hum Genet; 2018 Sep; 82(5):280-286. PubMed ID: 29733446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthetic associations created by rare variants do not explain most GWAS results.
    Wray NR; Purcell SM; Visscher PM
    PLoS Biol; 2011 Jan; 9(1):e1000579. PubMed ID: 21267061
    [No Abstract]   [Full Text] [Related]  

  • 39. Design of association studies with pooled or un-pooled next-generation sequencing data.
    Kim SY; Li Y; Guo Y; Li R; Holmkvist J; Hansen T; Pedersen O; Wang J; Nielsen R
    Genet Epidemiol; 2010 Jul; 34(5):479-91. PubMed ID: 20552648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. e-GRASP: an integrated evolutionary and GRASP resource for exploring disease associations.
    Karim S; NourEldin HF; Abusamra H; Salem N; Alhathli E; Dudley J; Sanderford M; Scheinfeldt LB; Chaudhary AG; Al-Qahtani MH; Kumar S
    BMC Genomics; 2016 Oct; 17(Suppl 9):770. PubMed ID: 27766955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.