BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 22792494)

  • 1. The corpus callosum and the visual cortex: plasticity is a game for two.
    Pietrasanta M; Restani L; Caleo M
    Neural Plast; 2012; 2012():838672. PubMed ID: 22792494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of ocular dominance columns and patchy callosal connections on binocularity in lateral striate cortex: Long Evans versus albino rats.
    Andelin AK; Doyle Z; Laing RJ; Turecek J; Lin B; Olavarria JF
    J Comp Neurol; 2020 Mar; 528(4):650-663. PubMed ID: 31606892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Callosal contribution to ocular dominance in rat primary visual cortex.
    Cerri C; Restani L; Caleo M
    Eur J Neurosci; 2010 Oct; 32(7):1163-9. PubMed ID: 20726891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex.
    Pietrasanta M; Restani L; Cerri C; Olcese U; Medini P; Caleo M
    Eur J Neurosci; 2014 Jul; 40(1):2283-92. PubMed ID: 24689940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocular dominance columns in V1 are more susceptible than associated callosal patches to imbalance of eye input during precritical and critical periods.
    Olavarria JF; Laing RJ; Andelin AK
    J Comp Neurol; 2021 Aug; 529(11):2883-2910. PubMed ID: 33683706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual hemispheric dominance induced in split brain cats during development: a model of deficient interhemispheric transfer derived from physiological evidence in single visual cortex cells.
    Yinon U
    Behav Brain Res; 1994 Oct; 64(1-2):97-110. PubMed ID: 7840897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental interactions between the corpus callosum and the visual system in cats.
    Elberger AJ
    Behav Brain Res; 1988 Sep; 30(2):119-34. PubMed ID: 3166711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The minimum extent of corpus callosum connections required for normal visual development in the cat.
    Elberger AJ
    Hum Neurobiol; 1984; 3(2):115-20. PubMed ID: 6746334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impairment of binocular vision in the adult cat induces plastic changes in the callosal cortical map.
    Watroba L; Buser P; Milleret C
    Eur J Neurosci; 2001 Sep; 14(6):1021-9. PubMed ID: 11595040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual Cortex.
    Wang BS; Bernardez Sarria MS; An X; He M; Alam NM; Prusky GT; Crair MC; Huang ZJ
    Neuron; 2021 Feb; 109(3):502-515.e7. PubMed ID: 33290732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-dependent development of interhemispheric connections in the visual cortex.
    Tagawa Y; Mizuno H; Hirano T
    Rev Neurosci; 2008; 19(1):19-28. PubMed ID: 18561818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient synaptic silencing of developing striate cortex has persistent effects on visual function and plasticity.
    Caleo M; Restani L; Gianfranceschi L; Costantin L; Rossi C; Rossetto O; Montecucco C; Maffei L
    J Neurosci; 2007 Apr; 27(17):4530-40. PubMed ID: 17460066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-critical period plasticity of callosal transfer to visual cortex cells of cats following early conditioning of monocular deprivation and late optic chiasm transection.
    Yinon U; Hammer A
    Brain Res; 1990 May; 516(1):84-90. PubMed ID: 2364285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The corpus callosum provides a massive transitory input to the visual cortex of cat and rat during early postnatal development.
    Elberger AJ
    Behav Brain Res; 1994 Oct; 64(1-2):15-33. PubMed ID: 7840881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete restoration of visual cortical responses is possible late in development. Focus on "recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity".
    Chalupa LM
    J Neurophysiol; 2004 Oct; 92(4):1969-70. PubMed ID: 15381738
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of dark rearing on the development of visual callosal connections.
    Frost DO; Moy YP
    Exp Brain Res; 1989; 78(1):203-13. PubMed ID: 2591513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ocular dominance and receptive field properties of visual cortex cells of cats following long-term transection of the optic chiasm and monocular deprivation during adulthood.
    Yinon U; Milgram A
    Behav Brain Res; 1990 May; 38(2):163-73. PubMed ID: 2363836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experience-dependent orientation plasticity in the visual cortex of rats chronically exposed to a single orientation.
    O'Hashi K; Miyashita M; Tanaka S
    Neurosci Res; 2007 May; 58(1):86-90. PubMed ID: 17300846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.