These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 22793155)

  • 1. Zwitterions can be predominant in membrane penetration of drugs: experimental proof.
    Mazák K; Noszál B
    J Med Chem; 2012 Aug; 55(15):6942-7. PubMed ID: 22793155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thyroxine lipophilicity is dominated by its zwitterionic microspecies.
    Mazák K; Tóth G; Kökösi J; Noszál B
    Eur J Pharm Sci; 2012 Dec; 47(5):921-5. PubMed ID: 23026446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipophilicity of morphine microspecies and their contribution to the lipophilicity profile.
    Mazák K; Noszál B
    Eur J Pharm Sci; 2012 Jan; 45(1-2):205-10. PubMed ID: 22120645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipophilicity of zwitterions and related species: a new insight.
    Mazák K; Kökösi J; Noszál B
    Eur J Pharm Sci; 2011 Sep; 44(1-2):68-73. PubMed ID: 21726635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive Membrane Penetration of the Serotonin Precursor 5-Hydroxytryptophan is Controlled by Its Zwitterion.
    Mazák K; Noszál B
    Chem Biodivers; 2017 Aug; 14(8):. PubMed ID: 28502117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species-specific lipophilicity of thyroid hormones and their precursors in view of their membrane transport properties.
    Tóth G; Mazák K; Hosztafi S; Kökösi J; Noszál B
    J Pharm Biomed Anal; 2013 Mar; 76():112-8. PubMed ID: 23298914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species-specific lipophilicity of morphine antagonists.
    Mazák K; Hosztafi S; Noszál B
    Eur J Pharm Sci; 2015 Oct; 78():1-7. PubMed ID: 26122463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of protonation macro- and microconstants and octanol/water partition coefficient of the antiinflammatory drug niflumic acid.
    Takács-Novák K; Avdeef A; Box KJ; Podányi B; Szász G
    J Pharm Biomed Anal; 1994 Nov; 12(11):1369-77. PubMed ID: 7849133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton speciation and microspeciation of vinpocetine and related compounds in aqueous and biomimetic media.
    Mazák K; Nemes A; Noszál B
    Pharm Res; 1999 Nov; 16(11):1757-63. PubMed ID: 10571283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physico-chemical profiling of semisynthetic opioids.
    Mazák K; Hosztafi S; Kraszni M; Noszál B
    J Pharm Biomed Anal; 2017 Feb; 135():97-105. PubMed ID: 28012310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipophilic and electrostatic forces encoded in IAM-HPLC indexes of basic drugs: their role in membrane partition and their relationships with BBB passage data.
    Grumetto L; Carpentiero C; Barbato F
    Eur J Pharm Sci; 2012 Apr; 45(5):685-92. PubMed ID: 22306648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of conformer-specific partition coefficients in octanol/water systems.
    Kraszni M; Bányai I; Noszál B
    J Med Chem; 2003 May; 46(11):2241-5. PubMed ID: 12747795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug delivery: a process governed by species-specific lipophilicities.
    Mazák K; Noszál B
    Eur J Pharm Sci; 2014 Oct; 62():96-104. PubMed ID: 24880112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Correlation between the structures and physicochemical properties of chemotherapeutic fluoroquinolone agents].
    Szász G; Takácsné NK; Budváriné BZ; Hermecz I; Józan M; Lóre A; Noszál B
    Acta Pharm Hung; 1993 May; 63(3):105-14. PubMed ID: 8362651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between immobilized artificial membrane (IAM) HPLC data and lipophilicity in n-octanol for quinolone antibacterial agents.
    Barbato F; Cirocco V; Grumetto L; Immacolata La Rotonda M
    Eur J Pharm Sci; 2007 Aug; 31(5):288-97. PubMed ID: 17540545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (2-Benzyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-8-yl)-acetic acid: an aldose reductase inhibitor and antioxidant of zwitterionic nature.
    Stefek M; Tsantili-Kakoulidou A; Milackova I; Juskova M; Snirc V; Triantos N
    Bioorg Med Chem; 2011 Dec; 19(23):7181-5. PubMed ID: 22037047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General access to the vinca and tacaman alkaloids using a Rh(II)-catalyzed cyclization/cycloaddition cascade.
    England DB; Padwa A
    J Org Chem; 2008 Apr; 73(7):2792-802. PubMed ID: 18318547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical Properties of Zwitterionic Drugs in Therapy.
    Mazák K; Noszál B
    ChemMedChem; 2020 Jul; 15(13):1102-1110. PubMed ID: 32432820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic excitations of green fluorescent proteins: protonation states of chromophore model compound in solutions.
    Xie D; Zeng J
    J Comput Chem; 2005 Nov; 26(14):1487-96. PubMed ID: 16092146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elaboration of simplified vinca alkaloids and phomopsin hybrids.
    Ngo QA; Roussi F; Thoret S; Guéritte F
    Chem Biol Drug Des; 2010 Mar; 75(3):284-94. PubMed ID: 20659111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.