BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 22793519)

  • 1. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores.
    Bankura A; Chandra A
    J Phys Chem B; 2012 Aug; 116(32):9744-57. PubMed ID: 22793519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A first principles molecular dynamics study of the solvation structure and migration kinetics of an excess proton and a hydroxide ion in binary water-ammonia mixtures.
    Bankura A; Chandra A
    J Chem Phys; 2012 Mar; 136(11):114509. PubMed ID: 22443779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton transfer through hydrogen bonds in two-dimensional water layers: a theoretical study based on ab initio and quantum-classical simulations.
    Bankura A; Chandra A
    J Chem Phys; 2015 Jan; 142(4):044701. PubMed ID: 25637997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of fast proton transport along one-dimensional water chains confined in carbon nanotubes.
    Cao Z; Peng Y; Yan T; Li S; Li A; Voth GA
    J Am Chem Soc; 2010 Aug; 132(33):11395-7. PubMed ID: 20669967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio simulations of the effects of nanoscale confinement on proton transfer in hydrophobic environments.
    Habenicht BF; Paddison SJ
    J Phys Chem B; 2011 Sep; 115(37):10826-35. PubMed ID: 21830811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton transport through water-filled carbon nanotubes.
    Dellago C; Naor MM; Hummer G
    Phys Rev Lett; 2003 Mar; 90(10):105902. PubMed ID: 12689010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton transfer and the mobilities of the H+ and OH- ions from studies of a dissociating model for water.
    Lee SH; Rasaiah JC
    J Chem Phys; 2011 Sep; 135(12):124505. PubMed ID: 21974533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio molecular dynamics simulations investigating proton transfer in perfluorosulfonic acid functionalized carbon nanotubes.
    Habenicht BF; Paddison SJ; Tuckerman ME
    Phys Chem Chem Phys; 2010 Aug; 12(31):8728-32. PubMed ID: 20556301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of proton transport in a water-filled carbon nanotube and in liquid water.
    Chen J; Li XZ; Zhang Q; Michaelides A; Wang E
    Phys Chem Chem Phys; 2013 May; 15(17):6344-9. PubMed ID: 23518762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio molecular dynamics simulations of water and an excess proton in water confined in carbon nanotubes.
    Clark JK; Paddison SJ
    Phys Chem Chem Phys; 2014 Sep; 16(33):17756-69. PubMed ID: 25030323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton transfer and the diffusion of H+ and OH- ions along water wires.
    Lee SH; Rasaiah JC
    J Chem Phys; 2013 Sep; 139(12):124507. PubMed ID: 24089786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations.
    Wu K; Zhou B; Xiu P; Qi W; Wan R; Fang H
    J Chem Phys; 2010 Nov; 133(20):204702. PubMed ID: 21133447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton transport in triflic acid pentahydrate studied via ab initio path integral molecular dynamics.
    Hayes RL; Paddison SJ; Tuckerman ME
    J Phys Chem A; 2011 Jun; 115(23):6112-24. PubMed ID: 21434672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel.
    Pomès R; Roux B
    Biophys J; 1996 Jul; 71(1):19-39. PubMed ID: 8804586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating hydroxide anion interfacial activity by classical and multistate empirical valence bond molecular dynamics simulations.
    Wick CD; Dang LX
    J Phys Chem A; 2009 Jun; 113(22):6356-64. PubMed ID: 19391589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative proton transfer efficiencies of hydronium and hydroxide in aqueous solution: proton transfer vs Brownian motion.
    Uddin N; Kim J; Sung BJ; Choi TH; Choi CH; Kang H
    J Phys Chem B; 2014 Nov; 118(47):13671-8. PubMed ID: 25365595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The curious case of the hydrated proton.
    Knight C; Voth GA
    Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic ion selectivity of narrow hydrophobic pores.
    Song C; Corry B
    J Phys Chem B; 2009 May; 113(21):7642-9. PubMed ID: 19419185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropy of the water-carbon interaction: molecular simulations of water in low-diameter carbon nanotubes.
    Pérez-Hernández G; Schmidt B
    Phys Chem Chem Phys; 2013 Apr; 15(14):4995-5006. PubMed ID: 23443614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electric fields on proton transport through water chains.
    Hassan SA; Hummer G; Lee YS
    J Chem Phys; 2006 May; 124(20):204510. PubMed ID: 16774356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.