These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 227939)
41. Ethylene formation by polymorphonuclear leukocytes. Role of myeloperoxidase. Klebanoff SJ; Rosen H J Exp Med; 1978 Aug; 148(2):490-506. PubMed ID: 212502 [TBL] [Abstract][Full Text] [Related]
42. Production of oxygen-centered radicals by neutrophils and macrophages as studied by electron spin resonance (ESR). Bannister JV; Bannister WH Environ Health Perspect; 1985 Dec; 64():37-43. PubMed ID: 3007099 [TBL] [Abstract][Full Text] [Related]
43. Evidence for superoxide formation during hepatic metabolism of tamoxifen. Turner MJ; Fields CE; Everman DB Biochem Pharmacol; 1991 Jun; 41(11):1701-5. PubMed ID: 1645968 [TBL] [Abstract][Full Text] [Related]
44. Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. Ramos CL; Pou S; Britigan BE; Cohen MS; Rosen GM J Biol Chem; 1992 Apr; 267(12):8307-12. PubMed ID: 1314821 [TBL] [Abstract][Full Text] [Related]
45. Oxygen-based free radical generation by ferrous ions and deferoxamine. Klebanoff SJ; Waltersdorph AM; Michel BR; Rosen H J Biol Chem; 1989 Nov; 264(33):19765-71. PubMed ID: 2555330 [TBL] [Abstract][Full Text] [Related]
46. Evidence for hydroxyl radical generation by human Monocytes. Weiss SJ; King GW; LoBuglio AF J Clin Invest; 1977 Aug; 60(2):370-3. PubMed ID: 194926 [TBL] [Abstract][Full Text] [Related]
47. Oxidation of methionine by human polymorphonuclear leukocytes. Tsan MF; Chen JW J Clin Invest; 1980 May; 65(5):1041-50. PubMed ID: 6245104 [TBL] [Abstract][Full Text] [Related]
48. Hydroxyl free radical reactions with amino acids and proteins studied by electron spin resonance spectroscopy and spin-trapping. Nagy I; Floyd RA Biochim Biophys Acta; 1984 Nov; 790(3):238-50. PubMed ID: 6091763 [TBL] [Abstract][Full Text] [Related]
49. Oxygen radical generation and enzymatic properties of mitochondria in hypoxia/reoxygenation. Zwicker K; Dikalov S; Matuschka S; Mainka L; Hofmann M; Khramtsov V; Zimmer G Arzneimittelforschung; 1998 Jun; 48(6):629-36. PubMed ID: 9689418 [TBL] [Abstract][Full Text] [Related]
50. In vitro suppression of serum elastase-inhibitory capacity by reactive oxygen species generated by phagocytosing polymorphonuclear leukocytes. Carp H; Janoff A J Clin Invest; 1979 Apr; 63(4):793-7. PubMed ID: 220283 [TBL] [Abstract][Full Text] [Related]
51. Effect of polymorphonuclear leukocyte-derived oxygen free radicals and hypochlorous acid on cardiac function and some biochemical parameters. Prasad K; Kalra J; Chaudhary AK; Debnath D Am Heart J; 1990 Mar; 119(3 Pt 1):538-50. PubMed ID: 2155522 [TBL] [Abstract][Full Text] [Related]
52. An electron spin resonance study of oxyradical generation in superoxide dismutase- and catalase-deficient mutants of Escherichia coli K-12. Schellhorn HE; Pou S; Moody C; Hassan HM Arch Biochem Biophys; 1989 Jun; 271(2):323-31. PubMed ID: 2543292 [TBL] [Abstract][Full Text] [Related]
53. [Studies on biological damage by active oxygens. III. Generation of hydroxyl radical and inhibition of insulin release in hypoxanthine-xanthine oxidase system in the presence of pancreatic islet cells]. Sakurai K; Ogiso T Yakugaku Zasshi; 1989 Feb; 109(2):102-6. PubMed ID: 2664118 [TBL] [Abstract][Full Text] [Related]
54. Myeloperoxidase oxidation of sulfur-centered and benzoic acid hydroxyl radical scavengers. Green TR; Fellman JH; Eicher AL FEBS Lett; 1985 Nov; 192(1):33-6. PubMed ID: 2996939 [TBL] [Abstract][Full Text] [Related]
55. Studies on the molecular mechanisms of human Fc receptor-mediated phagocytosis. Amplification of ingestion is dependent on the generation of reactive oxygen metabolites and is deficient in polymorphonuclear leukocytes from patients with chronic granulomatous disease. Gresham HD; McGarr JA; Shackelford PG; Brown EJ J Clin Invest; 1988 Oct; 82(4):1192-201. PubMed ID: 3049672 [TBL] [Abstract][Full Text] [Related]
56. Spin trap determination of free radical burst kinetics in stimulated neutrophils. Kleinhans FW; Barefoot ST J Biol Chem; 1987 Sep; 262(26):12452-7. PubMed ID: 3040748 [TBL] [Abstract][Full Text] [Related]
57. The metal-mediated formation of hydroxyl radical by aqueous extracts of cigarette tar. Cosgrove JP; Borish ET; Church DF; Pryor WA Biochem Biophys Res Commun; 1985 Oct; 132(1):390-6. PubMed ID: 2998360 [TBL] [Abstract][Full Text] [Related]
58. Bacteria form intracellular free radicals in response to paraquat and streptonigrin. Demonstration of the potency of hydroxyl radical. Hassett DJ; Britigan BE; Svendsen T; Rosen GM; Cohen MS J Biol Chem; 1987 Oct; 262(28):13404-8. PubMed ID: 2820968 [TBL] [Abstract][Full Text] [Related]
59. Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes. Rosen H; Klebanoff SJ J Clin Invest; 1976 Jul; 58(1):50-60. PubMed ID: 180060 [TBL] [Abstract][Full Text] [Related]
60. Free radical scavenging activity of the novel anti-ulcer agent rebamipide studied by electron spin resonance. Yoshikawa T; Naito Y; Tanigawa T; Kondo M Arzneimittelforschung; 1993 Mar; 43(3):363-6. PubMed ID: 8387788 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]