BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22794278)

  • 21. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time.
    Peña L; Martín-Trillo M; Juárez J; Pina JA; Navarro L; Martínez-Zapater JM
    Nat Biotechnol; 2001 Mar; 19(3):263-7. PubMed ID: 11231561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants.
    Mehrotra M; Sanyal I; Amla DV
    Plant Cell Rep; 2011 Sep; 30(9):1603-16. PubMed ID: 21516347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic transformation of mature citrus plants.
    Cervera M; Juárez J; Navarro L; Peña L
    Methods Mol Biol; 2005; 286():177-88. PubMed ID: 15310921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K2: a time-phased screening strategy.
    Bhatnagar S; Khurana P
    Plant Cell Rep; 2003 Mar; 21(7):669-75. PubMed ID: 12789417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors.
    Meza TJ; Kamfjord D; Håkelien AM; Evans I; Godager LH; Mandal A; Jakobsen KS; Aalen RB
    Transgenic Res; 2001; 10(1):53-67. PubMed ID: 11252383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selection for kanamycin resistance in transformed petunia cells leads to the co-amplification of a linked gene.
    Jones JD; Weller SC; Goldsbrough PB
    Plant Mol Biol; 1994 Feb; 24(3):505-14. PubMed ID: 8123792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MicroTom--a high-throughput model transformation system for functional genomics.
    Dan Y; Yan H; Munyikwa T; Dong J; Zhang Y; Armstrong CL
    Plant Cell Rep; 2006 May; 25(5):432-41. PubMed ID: 16341726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new double right border binary vector for producing marker-free transgenic plants.
    Matheka JM; Anami S; Gethi J; Omer RA; Alakonya A; Machuka J; Runo S
    BMC Res Notes; 2013 Nov; 6():448. PubMed ID: 24207020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation, characterization, and evaluation of three Citrus sinensis-derived constitutive gene promoters.
    Erpen L; Tavano ECR; Harakava R; Dutt M; Grosser JW; Piedade SMS; Mendes BMJ; Mourão Filho FAA
    Plant Cell Rep; 2018 Aug; 37(8):1113-1125. PubMed ID: 29796947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes.
    Domínguez A; Fagoaga C; Navarro L; Moreno P; Peña L
    Mol Genet Genomics; 2002 Jun; 267(4):544-56. PubMed ID: 12111562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of genetic transformation in Morus alba L. via different regeneration systems.
    Agarwal S; Kanwar K
    Plant Cell Rep; 2007 Feb; 26(2):177-85. PubMed ID: 16951950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance.
    Bordas M; Montesinos C; Dabauza M; Salvador A; Roig LA; Serrano R; Moreno V
    Transgenic Res; 1997 Jan; 6(1):41-50. PubMed ID: 9032977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A field-grown transgenic tomato line expressing higher levels of polyamines reveals legume cover crop mulch-specific perturbations in fruit phenotype at the levels of metabolite profiles, gene expression, and agronomic characteristics.
    Neelam A; Cassol T; Mehta RA; Abdul-Baki AA; Sobolev AP; Goyal RK; Abbott J; Segre AL; Handa AK; Mattoo AK
    J Exp Bot; 2008; 59(9):2337-46. PubMed ID: 18469323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A reproducible genetic transformation system for cultivated Phaseolus acutifolius (tepary bean) and its use to assess the role of arcelins in resistance to the Mexican bean weevil.
    Zambre M; Goossens A; Cardona C; Van Montagu M; Terryn N; Angenon G
    Theor Appl Genet; 2005 Mar; 110(5):914-24. PubMed ID: 15702345
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alteration of soil rhizosphere communities following genetic transformation of white spruce.
    LeBlanc PM; Hamelin RC; Filion M
    Appl Environ Microbiol; 2007 Jul; 73(13):4128-34. PubMed ID: 17468272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds.
    Corredoira E; Valladares S; Allona I; Aragoncillo C; Vieitez AM; Ballester A
    Tree Physiol; 2012 Nov; 32(11):1389-402. PubMed ID: 23086811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transgene suppression in plants by foliar application of in vitro-synthesized small interfering RNAs.
    Dubrovina AS; Aleynova OA; Suprun AR; Ogneva ZV; Kiselev KV
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2125-2135. PubMed ID: 31932895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus×domestica Borkh.).
    Herzog K; Flachowsky H; Deising HB; Hanke MV
    Gene; 2012 Apr; 498(1):41-9. PubMed ID: 22349025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic transformation of mature embryos of bread (T. aestivum) and pasta (T. durum) wheat genotypes.
    Moghaieb RE; El-Arabi NI; Momtaz OA; Youssef SS; Soliman MH
    GM Crops; 2010; 1(2):87-93. PubMed ID: 21865876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.