These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22794314)

  • 1. DNA repair inhibitors: the next major step to improve cancer therapy.
    Barakat K; Gajewski M; Tuszynski JA
    Curr Top Med Chem; 2012; 12(12):1376-90. PubMed ID: 22794314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Repair Inhibitors: Our Last Disposal to Improve Cancer Therapy.
    Barakat K; Gajewski M; Tuszynski J
    Curr Top Med Chem; 2012 Jun; ():. PubMed ID: 22690684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological relevance of DNA polymerase β and translesion synthesis polymerases to cancer and its treatment.
    Nicolay NH; Helleday T; Sharma RA
    Curr Mol Pharmacol; 2012 Jan; 5(1):54-67. PubMed ID: 22122464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New design of nucleotide excision repair (NER) inhibitors for combination cancer therapy.
    Gentile F; Tuszynski JA; Barakat KH
    J Mol Graph Model; 2016 Apr; 65():71-82. PubMed ID: 26939044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA polymerase beta (pol β) inhibitors: a comprehensive overview.
    Barakat KH; Gajewski MM; Tuszynski JA
    Drug Discov Today; 2012 Aug; 17(15-16):913-20. PubMed ID: 22561893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic Effects of an Irreversible DNA Polymerase Inhibitor and DNA Damaging Agents on HeLa Cells.
    Paul R; Banerjee S; Greenberg MM
    ACS Chem Biol; 2017 Jun; 12(6):1576-1583. PubMed ID: 28459532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Base excision repair and design of small molecule inhibitors of human DNA polymerase β.
    Wilson SH; Beard WA; Shock DD; Batra VK; Cavanaugh NA; Prasad R; Hou EW; Liu Y; Asagoshi K; Horton JK; Stefanick DF; Kedar PS; Carrozza MJ; Masaoka A; Heacock ML
    Cell Mol Life Sci; 2010 Nov; 67(21):3633-47. PubMed ID: 20844920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxed complex scheme suggests novel inhibitors for the lyase activity of DNA polymerase beta.
    Barakat K; Tuszynski J
    J Mol Graph Model; 2011 Feb; 29(5):702-16. PubMed ID: 21194999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA Polymerase Beta Germline Variant Confers Cellular Response to Cisplatin Therapy.
    Nemec AA; Abriola L; Merkel JS; de Stanchina E; DeVeaux M; Zelterman D; Glazer PM; Sweasy JB
    Mol Cancer Res; 2017 Mar; 15(3):269-280. PubMed ID: 28074003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Up-regulation of base excision repair correlates with enhanced protection against a DNA damaging agent in mouse cell lines.
    Chen KH; Yakes FM; Srivastava DK; Singhal RK; Sobol RW; Horton JK; Van Houten B; Wilson SH
    Nucleic Acids Res; 1998 Apr; 26(8):2001-7. PubMed ID: 9518496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Activity of Variant DNA Polymerase β (D160G) Contributes to Cisplatin Therapy by Impeding the Efficiency of NER.
    Wang M; Li E; Lin L; Kumar AK; Pan F; He L; Zhang J; Hu Z; Guo Z
    Mol Cancer Res; 2019 Oct; 17(10):2077-2088. PubMed ID: 31350308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aphidicolin-resistant and -sensitive base excision repair in wild-type and DNA polymerase beta-defective mouse cells.
    Parlanti E; Pascucci B; Terrados G; Blanco L; Dogliotti E
    DNA Repair (Amst); 2004 Jul; 3(7):703-10. PubMed ID: 15177179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implication of p53 in base excision DNA repair: in vivo evidence.
    Seo YR; Fishel ML; Amundson S; Kelley MR; Smith ML
    Oncogene; 2002 Jan; 21(5):731-7. PubMed ID: 11850801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Honokiol Inhibits DNA Polymerases β and λ and Increases Bleomycin Sensitivity of Human Cancer Cells.
    Gowda AS; Suo Z; Spratt TE
    Chem Res Toxicol; 2017 Feb; 30(2):715-725. PubMed ID: 28067485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NDRG1 disruption alleviates cisplatin/sodium glycididazole-induced DNA damage response and apoptosis in ERCC1-defective lung cancer cells.
    He L; Liu K; Wang X; Chen H; Zhou J; Wu X; Liu T; Yang Y; Yang X; Cui D; Song G; Wang J; Lei J
    Int J Biochem Cell Biol; 2018 Jul; 100():54-60. PubMed ID: 29768183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting DNA polymerase ß for therapeutic intervention.
    Goellner EM; Svilar D; Almeida KH; Sobol RW
    Curr Mol Pharmacol; 2012 Jan; 5(1):68-87. PubMed ID: 22122465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting DNA repair pathways: a novel approach to reduce cancer therapeutic resistance.
    Zhu Y; Hu J; Hu Y; Liu W
    Cancer Treat Rev; 2009 Nov; 35(7):590-6. PubMed ID: 19635647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding the scope of human DNA polymerase λ and β inhibitors.
    Strittmatter T; Brockmann A; Pott M; Hantusch A; Brunner T; Marx A
    ACS Chem Biol; 2014 Jan; 9(1):282-90. PubMed ID: 24171552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death.
    Trivedi RN; Almeida KH; Fornsaglio JL; Schamus S; Sobol RW
    Cancer Res; 2005 Jul; 65(14):6394-400. PubMed ID: 16024643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways.
    Fujii N
    J Med Chem; 2017 Dec; 60(24):9932-9959. PubMed ID: 28654754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.