BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 22795778)

  • 1. Is adhesion superficial? Silicon wafers as a model system to study van der Waals interactions.
    Loskill P; Hähl H; Faidt T; Grandthyll S; Müller F; Jacobs K
    Adv Colloid Interface Sci; 2012 Nov; 179-182():107-13. PubMed ID: 22795778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the subsurface composition of a material on the adhesion of staphylococci.
    Loskill P; Hähl H; Thewes N; Kreis CT; Bischoff M; Herrmann M; Jacobs K
    Langmuir; 2012 May; 28(18):7242-8. PubMed ID: 22475009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subsurface influence on the structure of protein adsorbates as revealed by in situ X-ray reflectivity.
    Hähl H; Evers F; Grandthyll S; Paulus M; Sternemann C; Loskill P; Lessel M; Hüsecken AK; Brenner T; Tolan M; Jacobs K
    Langmuir; 2012 May; 28(20):7747-56. PubMed ID: 22533829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. van der Waals screening by single-layer graphene and molybdenum disulfide.
    Tsoi S; Dev P; Friedman AL; Stine R; Robinson JT; Reinecke TL; Sheehan PE
    ACS Nano; 2014 Dec; 8(12):12410-7. PubMed ID: 25412420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of van der Waals interactions on single asperity friction.
    Lessel M; Loskill P; Hausen F; Gosvami NN; Bennewitz R; Jacobs K
    Phys Rev Lett; 2013 Jul; 111(3):035502. PubMed ID: 23909336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modeling approach to describe the adhesion of rough, asymmetric particles to surfaces.
    Eichenlaub S; Kumar G; Beaudoin S
    J Colloid Interface Sci; 2006 Jul; 299(2):656-64. PubMed ID: 16631774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of van der Waals interactions on morphology and dynamics in ultrathin liquid films at silicon oxide interfaces.
    Täuber D; Trenkmann I; von Borczyskowski C
    Langmuir; 2013 Mar; 29(11):3583-93. PubMed ID: 23441876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene.
    Deng Z; Klimov NN; Solares SD; Li T; Xu H; Cannara RJ
    Langmuir; 2013 Jan; 29(1):235-43. PubMed ID: 23215163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroscale adhesion of gecko setae reflects nanoscale differences in subsurface composition.
    Loskill P; Puthoff J; Wilkinson M; Mecke K; Jacobs K; Autumn K
    J R Soc Interface; 2013 Jan; 10(78):20120587. PubMed ID: 22993246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Van der Waals interactions in density functional theory using Wannier functions.
    Silvestrelli PL
    J Phys Chem A; 2009 Apr; 113(17):5224-34. PubMed ID: 19344144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon addition to hydroxyapatite increases nanoscale electrostatic, van der Waals, and adhesive interactions.
    Vandiver J; Dean D; Patel N; Botelho C; Best S; Santos JD; Lopes MA; Bonfield W; Ortiz C
    J Biomed Mater Res A; 2006 Aug; 78(2):352-63. PubMed ID: 16646067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and validation of the van der Waals force during the adhesion of nanoscale objects to rough surfaces: a detailed description.
    Jaiswal RP; Kumar G; Kilroy CM; Beaudoin SP
    Langmuir; 2009 Sep; 25(18):10612-23. PubMed ID: 19735133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra long-range interactions between large area graphene and silicon.
    Na SR; Suk JW; Ruoff RS; Huang R; Liechti KM
    ACS Nano; 2014 Nov; 8(11):11234-42. PubMed ID: 25317979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of directed van der Waals bonded interactions in the determination of the structures of molecular arsenate solids.
    Gibbs GV; Wallace AF; Cox DF; Dove PM; Downs RT; Ross NL; Rosso KM
    J Phys Chem A; 2009 Jan; 113(4):736-49. PubMed ID: 19123777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of van der Waals forces in adhesion of micromachined surfaces.
    Delrio FW; de Boer MP; Knapp JA; David Reedy E; Clews PJ; Dunn ML
    Nat Mater; 2005 Aug; 4(8):629-34. PubMed ID: 16025121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. van der Waals interaction between internal aqueous droplets and the external aqueous phase in double emulsions.
    Wen L; Cheng J; Zou H; Zhang L; Chen J; Papadopoulos KD
    Langmuir; 2004 Sep; 20(19):8391-7. PubMed ID: 15350119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling van der Waals interactions between proteins and inorganic surfaces from time-dependent density functional theory calculations.
    Oliveira MJ; Botti S; Marques MA
    Phys Chem Chem Phys; 2011 Sep; 13(33):15055-61. PubMed ID: 21785779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of frictional forces on graphene and graphite.
    Lee H; Lee N; Seo Y; Eom J; Lee S
    Nanotechnology; 2009 Aug; 20(32):325701. PubMed ID: 19620757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved description of soft layered materials with van der Waals density functional theory.
    Graziano G; Klimeš J; Fernandez-Alonso F; Michaelides A
    J Phys Condens Matter; 2012 Oct; 24(42):424216. PubMed ID: 23032994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of van der Waals bonding and interactions in metal organic framework materials.
    Zuluaga S; Canepa P; Tan K; Chabal YJ; Thonhauser T
    J Phys Condens Matter; 2014 Apr; 26(13):133002. PubMed ID: 24613989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.