These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22796014)

  • 1. Dissolution and characterization of HEV NiMH batteries.
    Larsson K; Ekberg C; Ødegaard-Jensen A
    Waste Manag; 2013 Mar; 33(3):689-98. PubMed ID: 22796014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical and physical characterization of electrode materials of spent sealed Ni-Cd batteries.
    Nogueira CA; Margarido F
    Waste Manag; 2007; 27(11):1570-9. PubMed ID: 17166709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.
    Lin SL; Huang KL; Wang IC; Chou IC; Kuo YM; Hung CH; Lin C
    J Air Waste Manag Assoc; 2016 Mar; 66(3):296-306. PubMed ID: 26651506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of nickel, cobalt and some salts from spent Ni-MH batteries.
    Rabah MA; Farghaly FE; Abd-El Motaleb MA
    Waste Manag; 2008; 28(7):1159-67. PubMed ID: 17714929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.
    Tanong K; Coudert L; Mercier G; Blais JF
    J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes.
    Buzatu T; Popescu G; Birloaga I; Săceanu S
    Waste Manag; 2013 Mar; 33(3):699-705. PubMed ID: 23158875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone.
    Jha MK; Kumari A; Jha AK; Kumar V; Hait J; Pandey BD
    Waste Manag; 2013 Sep; 33(9):1890-7. PubMed ID: 23773705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.
    Nogueira CA; Margarido F
    Environ Technol; 2012; 33(1-3):359-66. PubMed ID: 22519122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and recycling of cadmium from waste nickel-cadmium batteries.
    Huang K; Li J; Xu Z
    Waste Manag; 2010 Nov; 30(11):2292-8. PubMed ID: 20541388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium.
    Valverde IM; Paulino JF; Afonso JC
    J Hazard Mater; 2008 Dec; 160(2-3):310-7. PubMed ID: 18400377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries.
    Yang Y; Lei S; Song S; Sun W; Wang L
    Waste Manag; 2020 Feb; 102():131-138. PubMed ID: 31677520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2015 Nov; 45():306-13. PubMed ID: 26087645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rare earth element recycling from waste nickel-metal hydride batteries.
    Yang X; Zhang J; Fang X
    J Hazard Mater; 2014 Aug; 279():384-8. PubMed ID: 25089667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling of hazardous waste as a new resource for nickel extraction.
    Gharabaghi M; Ejtemaei M; Irannajad M; Azadmehr AR
    Environ Technol; 2012; 33(13-15):1569-76. PubMed ID: 22988617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid extraction of molybdenum, nickel and cobalt from mineral sludge generated by rainfall water at a metal recycling plant.
    Vemic M; Bordas F; Guibaud G; Comte S; Joussein E; Lens PN; Van Hullebusch ED
    Environ Technol; 2016; 37(5):630-9. PubMed ID: 26369315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of spent nickel-cadmium batteries based on bioleaching process.
    Zhu N; Zhang L; Li C; Cai C
    Waste Manag; 2003; 23(8):703-8. PubMed ID: 14522188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioleaching of spent Ni-Cd batteries by continuous flow system: effect of hydraulic retention time and process load.
    Zhao L; Yang D; Zhu NW
    J Hazard Mater; 2008 Dec; 160(2-3):648-54. PubMed ID: 18430515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni-Cd batteries.
    Velgosová O; Kaduková J; Marcinčáková R; Palfy P; Trpčevská J
    Waste Manag; 2013 Feb; 33(2):456-61. PubMed ID: 23131752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.