BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

724 related articles for article (PubMed ID: 22796016)

  • 1. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery.
    Yang N; Zhang H; Chen M; Shao LM; He PJ
    Waste Manag; 2012 Dec; 32(12):2552-60. PubMed ID: 22796016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.
    Yang N; Zhang H; Shao LM; Lü F; He PJ
    J Environ Manage; 2013 Nov; 129():510-21. PubMed ID: 24018116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
    Vainikka P; Tsupari E; Sipilä K; Hupa M
    Waste Manag; 2012 Mar; 32(3):426-37. PubMed ID: 22079250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waste-to-energy incineration plants as greenhouse gas reducers: a case study of seven Japanese metropolises.
    Tabata T
    Waste Manag Res; 2013 Nov; 31(11):1110-7. PubMed ID: 24025369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China.
    Zhao W; van der Voet E; Zhang Y; Huppes G
    Sci Total Environ; 2009 Feb; 407(5):1517-26. PubMed ID: 19068268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions.
    Astrup T; Møller J; Fruergaard T
    Waste Manag Res; 2009 Nov; 27(8):789-99. PubMed ID: 19748939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy and greenhouse gas balances for a solid waste incineration plant: a case study.
    Brinck K; Poulsen TG; Skov H
    Waste Manag Res; 2011 Oct; 29(10 Suppl):13-9. PubMed ID: 21746759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis.
    Liu Y; Sun W; Liu J
    Waste Manag; 2017 Oct; 68():653-661. PubMed ID: 28642075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong.
    Woon KS; Lo IM
    Sci Total Environ; 2013 Aug; 458-460():499-507. PubMed ID: 23697849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland.
    Hupponen M; Grönman K; Horttanainen M
    Waste Manag; 2015 Aug; 42():196-207. PubMed ID: 25936556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: a case study of Tianjin, China.
    Zhao W; Huppes G; van der Voet E
    Waste Manag; 2011 Jun; 31(6):1407-15. PubMed ID: 21316937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.
    Damgaard A; Riber C; Fruergaard T; Hulgaard T; Christensen TH
    Waste Manag; 2010 Jul; 30(7):1244-50. PubMed ID: 20378326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying and managing regional greenhouse gas emissions: waste sector of Daejeon, Korea.
    Yi S; Yang H; Lee SH; An KJ
    J Environ Sci (China); 2014 Jun; 26(6):1249-59. PubMed ID: 25079833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case.
    Park S; Choi JH; Park J
    Waste Manag; 2011 Aug; 31(8):1765-71. PubMed ID: 21478007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of municipal solid waste management on greenhouse gas emissions in the United States.
    Weitz KA; Thorneloe SA; Nishtala SR; Yarkosky S; Zannes M
    J Air Waste Manag Assoc; 2002 Sep; 52(9):1000-11. PubMed ID: 12269661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China.
    Cheng H; Hu Y
    Bioresour Technol; 2010 Jun; 101(11):3816-24. PubMed ID: 20137912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of municipal solid waste for renewable energy production and reduction of greenhouse gas emissions in South Korea.
    Ryu C
    J Air Waste Manag Assoc; 2010 Feb; 60(2):176-83. PubMed ID: 20222530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of reduced greenhouse gas emission from municipal solid waste incineration with electricity recovery in prefecture- and county-level cities of China.
    Zhao Q; Tang W; Han M; Cui W; Zhu L; Xie H; Li W; Wu F
    Sci Total Environ; 2023 Jun; 875():162654. PubMed ID: 36894103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.