BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22796146)

  • 1. Patient-derived fibroblasts indicate oxidative stress status and may justify antioxidant therapy in OXPHOS disorders.
    Voets AM; Lindsey PJ; Vanherle SJ; Timmer ED; Esseling JJ; Koopman WJ; Willems PH; Schoonderwoerd GC; De Groote D; Poll-The BT; de Coo IF; Smeets HJ
    Biochim Biophys Acta; 2012 Nov; 1817(11):1971-8. PubMed ID: 22796146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of small molecules on nuclear-encoded translation diseases.
    Soiferman D; Ayalon O; Weissman S; Saada A
    Biochimie; 2014 May; 100():184-91. PubMed ID: 24012549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly defects induce oxidative stress in inherited mitochondrial complex I deficiency.
    Leman G; Gueguen N; Desquiret-Dumas V; Kane MS; Wettervald C; Chupin S; Chevrollier A; Lebre AS; Bonnefont JP; Barth M; Amati-Bonneau P; Verny C; Henrion D; Bonneau D; Reynier P; Procaccio V
    Int J Biochem Cell Biol; 2015 Aug; 65():91-103. PubMed ID: 26024641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Termination of damaged protein repair defines the occurrence of symptoms in carriers of the m.3243A > G tRNA(Leu) mutation.
    van Eijsden RG; Eijssen LM; Lindsey PJ; van den Burg CM; de Wit LE; Rubio-Gozalbo ME; de Die CE; Ayoubi T; Sluiter W; de Coo IF; Smeets HJ
    J Med Genet; 2008 Aug; 45(8):525-34. PubMed ID: 18456717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary coenzyme Q10 deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts.
    Cotán D; Cordero MD; Garrido-Maraver J; Oropesa-Ávila M; Rodríguez-Hernández A; Gómez Izquierdo L; De la Mata M; De Miguel M; Lorite JB; Infante ER; Jackson S; Navas P; Sánchez-Alcázar JA
    FASEB J; 2011 Aug; 25(8):2669-87. PubMed ID: 21551238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring oxidative and nitrative modification of cellular proteins; a paradigm for identifying key disease related markers of oxidative stress.
    Murray J; Oquendo CE; Willis JH; Marusich MF; Capaldi RA
    Adv Drug Deliv Rev; 2008; 60(13-14):1497-503. PubMed ID: 18647628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systems approach for decoding mitochondrial retrograde signaling pathways.
    Chae S; Ahn BY; Byun K; Cho YM; Yu MH; Lee B; Hwang D; Park KS
    Sci Signal; 2013 Feb; 6(264):rs4. PubMed ID: 23443683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional changes in OXPHOS complex I deficiency are related to anti-oxidant pathways and could explain the disturbed calcium homeostasis.
    Voets AM; Huigsloot M; Lindsey PJ; Leenders AM; Koopman WJ; Willems PH; Rodenburg RJ; Smeitink JA; Smeets HJ
    Biochim Biophys Acta; 2012 Jul; 1822(7):1161-8. PubMed ID: 22033105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants.
    Cui K; Luo X; Xu K; Ven Murthy MR
    Prog Neuropsychopharmacol Biol Psychiatry; 2004 Aug; 28(5):771-99. PubMed ID: 15363603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial theory of aging matures--roles of mtDNA mutation and oxidative stress in human aging.
    Wei YH; Ma YS; Lee HC; Lee CF; Lu CY
    Zhonghua Yi Xue Za Zhi (Taipei); 2001 May; 64(5):259-70. PubMed ID: 11499335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical and cellular consequences of the mutation m.12300G>A in the mitochondrial tRNA(Leu(CUN)) gene.
    Martín-Jiménez R; Martín-Hernández E; Cabello A; García-Silva MT; Arenas J; Campos Y
    Mitochondrion; 2012 Mar; 12(2):288-93. PubMed ID: 22094595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesenchymal stem cells improve redox homeostasis and mitochondrial respiration in fibroblast cell lines with pathogenic MT-ND3 and MT-ND6 variants.
    Navaratnarajah T; Bellmann M; Seibt A; Anand R; Degistirici Ö; Meisel R; Mayatepek E; Reichert A; Baertling F; Distelmaier F
    Stem Cell Res Ther; 2022 Jun; 13(1):256. PubMed ID: 35715829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced ROS production and antioxidant defenses in cybrids harbouring mutations in mtDNA.
    Vives-Bauza C; Gonzalo R; Manfredi G; Garcia-Arumi E; Andreu AL
    Neurosci Lett; 2006 Jan; 391(3):136-41. PubMed ID: 16165271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of reactive oxygen species-elicited apoptosis in the pathophysiology of mitochondrial and neurodegenerative diseases associated with mitochondrial DNA mutations.
    Liu CY; Lee CF; Wei YH
    J Formos Med Assoc; 2009 Aug; 108(8):599-611. PubMed ID: 19666347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of 5-aminolevulinic acid and sodium ferrous citrate on fibroblasts from individuals with mitochondrial diseases.
    Shimura M; Nozawa N; Ogawa-Tominaga M; Fushimi T; Tajika M; Ichimoto K; Matsunaga A; Tsuruoka T; Kishita Y; Ishii T; Takahashi K; Tanaka T; Nakajima M; Okazaki Y; Ohtake A; Murayama K
    Sci Rep; 2019 Jul; 9(1):10549. PubMed ID: 31332208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production.
    Trifunovic A; Hansson A; Wredenberg A; Rovio AT; Dufour E; Khvorostov I; Spelbrink JN; Wibom R; Jacobs HT; Larsson NG
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):17993-8. PubMed ID: 16332961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondria: mitochondrial OXPHOS (dys) function ex vivo--the use of primary fibroblasts.
    Saada A
    Int J Biochem Cell Biol; 2014 Mar; 48():60-5. PubMed ID: 24412346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal biochemical analysis of the oxidative phosphorylation (OXPHOS) system in a child with POLG mutations: a cautionary note.
    de Vries MC; Rodenburg RJ; Morava E; Lammens M; van den Heuvel LP; Korenke GC; Smeitink JA
    J Inherit Metab Dis; 2008 Dec; 31 Suppl 2():S299-302. PubMed ID: 18500570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants.
    Mattiazzi M; Vijayvergiya C; Gajewski CD; DeVivo DC; Lenaz G; Wiedmann M; Manfredi G
    Hum Mol Genet; 2004 Apr; 13(8):869-79. PubMed ID: 14998933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.