These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 22796244)

  • 1. Gait phase detection and discrimination between walking-jogging activities using hidden Markov models applied to foot motion data from a gyroscope.
    Mannini A; Sabatini AM
    Gait Posture; 2012 Sep; 36(4):657-61. PubMed ID: 22796244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online decoding of hidden Markov models for gait event detection using foot-mounted gyroscopes.
    Mannini A; Genovese V; Maria Sabatini A
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1122-30. PubMed ID: 25014927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hidden Markov model-based technique for gait segmentation using a foot-mounted gyroscope.
    Mannini A; Sabatini AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4369-73. PubMed ID: 22255307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stair climbing detection during daily physical activity using a miniature gyroscope.
    Coley B; Najafi B; Paraschiv-Ionescu A; Aminian K
    Gait Posture; 2005 Dec; 22(4):287-94. PubMed ID: 16274909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection.
    Kotiadis D; Hermens HJ; Veltink PH
    Med Eng Phys; 2010 May; 32(4):287-97. PubMed ID: 20153237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network.
    Qi Y; Soh CB; Gunawan E; Low KS; Thomas R
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heel and toe clearance estimation for gait analysis using wireless inertial sensors.
    Mariani B; Rochat S; Büla CJ; Aminian K
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3162-8. PubMed ID: 22955865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Referent body weight values in over ground walking, over ground jogging, treadmill jogging, and elliptical exercise.
    Kaplan Y; Barak Y; Palmonovich E; Nyska M; Witvrouw E
    Gait Posture; 2014; 39(1):558-62. PubMed ID: 24095267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial sensing algorithms for long-term foot angle monitoring for assessment of idiopathic toe-walking.
    Chalmers E; Le J; Sukhdeep D; Watt J; Andersen J; Lou E
    Gait Posture; 2014; 39(1):485-9. PubMed ID: 24050952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of toe-off event time during treadmill locomotion using kinematic data.
    De Witt JK
    J Biomech; 2010 Nov; 43(15):3067-9. PubMed ID: 20801452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of an accelerometer-based method for quantifying gait events.
    Boutaayamou M; Schwartz C; Stamatakis J; Denoël V; Maquet D; Forthomme B; Croisier JL; Macq B; Verly JG; Garraux G; Brüls O
    Med Eng Phys; 2015 Feb; 37(2):226-32. PubMed ID: 25618221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait event detection using a multilayer neural network.
    Miller A
    Gait Posture; 2009 Jun; 29(4):542-5. PubMed ID: 19135372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated method to distinguish toe walking strides from normal strides in the gait of idiopathic toe walking children from heel accelerometry data.
    Pendharkar G; Percival P; Morgan D; Lai D
    Gait Posture; 2012 Mar; 35(3):478-82. PubMed ID: 22300731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of Inter-Subject Training for Hidden Markov Models Applied to Gait Phase Detection in Children with Cerebral Palsy.
    Taborri J; Scalona E; Palermo E; Rossi S; Cappa P
    Sensors (Basel); 2015 Sep; 15(9):24514-29. PubMed ID: 26404309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walking pattern classification and walking distance estimation algorithms using gait phase information.
    Wang JS; Lin CW; Yang YT; Ho YJ
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2884-92. PubMed ID: 22893370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ankle kinematics of individuals with chronic ankle instability while walking and jogging on a treadmill in shoes.
    Chinn L; Dicharry J; Hertel J
    Phys Ther Sport; 2013 Nov; 14(4):232-9. PubMed ID: 23623243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated detection of instantaneous gait events using time frequency analysis and manifold embedding.
    Aung MS; Thies SB; Kenney LP; Howard D; Selles RW; Findlow AH; Goulermas JY
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):908-16. PubMed ID: 23322764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Walking speed estimation using foot-mounted inertial sensors: comparing machine learning and strap-down integration methods.
    Mannini A; Sabatini AM
    Med Eng Phys; 2014 Oct; 36(10):1312-21. PubMed ID: 25199588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.