These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22796538)

  • 1. Electrical communication in branching arterial networks.
    Tran CH; Vigmond EJ; Goldman D; Plane F; Welsh DG
    Am J Physiol Heart Circ Physiol; 2012 Sep; 303(6):H680-92. PubMed ID: 22796538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining electrical communication in skeletal muscle resistance arteries: a computational approach.
    Diep HK; Vigmond EJ; Segal SS; Welsh DG
    J Physiol; 2005 Oct; 568(Pt 1):267-81. PubMed ID: 16002449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conceptualizing conduction as a pliant electrical response: impact of gap junctions and ion channels.
    Hald BO; Welsh DG
    Am J Physiol Heart Circ Physiol; 2020 Dec; 319(6):H1276-H1289. PubMed ID: 32986968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intercellular Conduction Optimizes Arterial Network Function and Conserves Blood Flow Homeostasis During Cerebrovascular Challenges.
    Zechariah A; Tran CHT; Hald BO; Sandow SL; Sancho M; Kim MSM; Fabris S; Tuor UI; Gordon GRJ; Welsh DG
    Arterioscler Thromb Vasc Biol; 2020 Mar; 40(3):733-750. PubMed ID: 31826653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic basis of differential conduction in skeletal muscle arteries.
    Tran CH; Vigmond EJ; Plane F; Welsh DG
    J Physiol; 2009 Mar; 587(Pt 6):1301-18. PubMed ID: 19171655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Less is more: minimal expression of myoendothelial gap junctions optimizes cell-cell communication in virtual arterioles.
    Hald BO; Jacobsen JC; Sandow SL; Holstein-Rathlou NH; Welsh DG
    J Physiol; 2014 Aug; 592(15):3243-55. PubMed ID: 24907303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of blood flow in the microcirculation: role of conducted vasodilation.
    Bagher P; Segal SS
    Acta Physiol (Oxf); 2011 Jul; 202(3):271-84. PubMed ID: 21199397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle.
    Segal SS; Welsh DG; Kurjiaka DT
    J Physiol; 1999 Apr; 516 ( Pt 1)(Pt 1):283-91. PubMed ID: 10066941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: role in vasomotor control.
    Emerson GG; Segal SS
    Circ Res; 2000 Sep; 87(6):474-9. PubMed ID: 10988239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration and Modulation of Intercellular Signaling Underlying Blood Flow Control.
    Segal SS
    J Vasc Res; 2015; 52(2):136-57. PubMed ID: 26368324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical activation of endothelium evokes vasodilation and hyperpolarization along hamster feed arteries.
    Emerson GG; Segal SS
    Am J Physiol Heart Circ Physiol; 2001 Jan; 280(1):H160-7. PubMed ID: 11123230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-induced arterial remodeling in rat mesenteric vasculature.
    Tulis DA; Unthank JL; Prewitt RL
    Am J Physiol; 1998 Mar; 274(3):H874-82. PubMed ID: 9530199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical conduction along endothelial cell tubes from mouse feed arteries: confounding actions of glycyrrhetinic acid derivatives.
    Behringer EJ; Socha MJ; Polo-Parada L; Segal SS
    Br J Pharmacol; 2012 May; 166(2):774-87. PubMed ID: 22168386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. K
    Sancho M; Samson NC; Hald BO; Hashad AM; Marrelli SP; Brett SE; Welsh DG
    J Cereb Blood Flow Metab; 2017 Jun; 37(6):2171-2184. PubMed ID: 27466375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses.
    Sandow SL; Hill CE
    Circ Res; 2000 Feb; 86(3):341-6. PubMed ID: 10679487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial alkalinisation inhibits gap junction communication and endothelium-derived hyperpolarisations in mouse mesenteric arteries.
    Boedtkjer E; Kim S; Aalkjaer C
    J Physiol; 2013 Mar; 591(6):1447-61. PubMed ID: 23297309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial mediators and communication through vascular gap junctions.
    de Wit C; Hoepfl B; Wölfle SE
    Biol Chem; 2006 Jan; 387(1):3-9. PubMed ID: 16497158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The differential hypothesis: a provocative rationalization of the conducted vasomotor response.
    Tran CH; Welsh DG
    Microcirculation; 2010 Apr; 17(3):226-36. PubMed ID: 20374485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An assessment of K
    Sancho M; Gao Y; Hald BO; Yin H; Boulton M; Steven DA; MacDougall KW; Parrent AG; Pickering JG; Welsh DG
    Am J Physiol Heart Circ Physiol; 2019 Apr; 316(4):H794-H800. PubMed ID: 30681365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning electrical conduction along endothelial tubes of resistance arteries through Ca(2+)-activated K(+) channels.
    Behringer EJ; Segal SS
    Circ Res; 2012 May; 110(10):1311-21. PubMed ID: 22492531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.