These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

961 related articles for article (PubMed ID: 22796662)

  • 1. Wisdom of crowds for robust gene network inference.
    Marbach D; Costello JC; Küffner R; Vega NM; Prill RJ; Camacho DM; Allison KR; ; Kellis M; Collins JJ; Stolovitzky G
    Nat Methods; 2012 Jul; 9(8):796-804. PubMed ID: 22796662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach.
    Zoppoli P; Morganella S; Ceccarelli M
    BMC Bioinformatics; 2010 Mar; 11():154. PubMed ID: 20338053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring regulatory networks from expression data using tree-based methods.
    Huynh-Thu VA; Irrthum A; Wehenkel L; Geurts P
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20927193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional network inference from functional similarity and expression data: a global supervised approach.
    Ambroise J; Robert A; Macq B; Gala JL
    Stat Appl Genet Mol Biol; 2012 Jan; 11(1):Article 2. PubMed ID: 22499684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of Escherichia coli transcriptional regulatory networks via regulon-based associations.
    Zare H; Sangurdekar D; Srivastava P; Kaveh M; Khodursky A
    BMC Syst Biol; 2009 Apr; 3():39. PubMed ID: 19366454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating realistic in silico gene networks for performance assessment of reverse engineering methods.
    Marbach D; Schaffter T; Mattiussi C; Floreano D
    J Comput Biol; 2009 Feb; 16(2):229-39. PubMed ID: 19183003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of co-expression patterns in E. coli and S. cerevisiae emerging from reverse engineering algorithms.
    Zampieri M; Soranzo N; Bianchini D; Altafini C
    PLoS One; 2008 Aug; 3(8):e2981. PubMed ID: 18714358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing gene regulatory networks inference through hub-based data integration.
    Naseri A; Sharghi M; Hasheminejad SMH
    Comput Biol Chem; 2021 Dec; 95():107589. PubMed ID: 34673384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles.
    Faith JJ; Hayete B; Thaden JT; Mogno I; Wierzbowski J; Cottarel G; Kasif S; Collins JJ; Gardner TS
    PLoS Biol; 2007 Jan; 5(1):e8. PubMed ID: 17214507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpreting patterns of gene expression: signatures of coregulation, the data processing inequality, and triplet motifs.
    Ku WL; Duggal G; Li Y; Girvan M; Ott E
    PLoS One; 2012; 7(2):e31969. PubMed ID: 22393375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensemble inference and inferability of gene regulatory networks.
    Ud-Dean SM; Gunawan R
    PLoS One; 2014; 9(8):e103812. PubMed ID: 25093509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IRIS: a method for reverse engineering of regulatory relations in gene networks.
    Morganella S; Zoppoli P; Ceccarelli M
    BMC Bioinformatics; 2009 Dec; 10():444. PubMed ID: 20030818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-Supervised Multi-View Learning for Gene Network Reconstruction.
    Ceci M; Pio G; Kuzmanovski V; Džeroski S
    PLoS One; 2015; 10(12):e0144031. PubMed ID: 26641091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks.
    Michoel T; De Smet R; Joshi A; Van de Peer Y; Marchal K
    BMC Syst Biol; 2009 May; 3():49. PubMed ID: 19422680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel gene network inference algorithm using predictive minimum description length approach.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Deng Y; Zhang C
    BMC Syst Biol; 2010 May; 4 Suppl 1(Suppl 1):S7. PubMed ID: 20522257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining multiple results of a reverse-engineering algorithm: application to the DREAM five-gene network challenge.
    Marbach D; Mattiussi C; Floreano D
    Ann N Y Acad Sci; 2009 Mar; 1158():102-13. PubMed ID: 19348636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Netter: re-ranking gene network inference predictions using structural network properties.
    Ruyssinck J; Demeester P; Dhaene T; Saeys Y
    BMC Bioinformatics; 2016 Feb; 17():76. PubMed ID: 26862054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference of gene regulatory networks with multi-objective cellular genetic algorithm.
    García-Nieto J; Nebro AJ; Aldana-Montes JF
    Comput Biol Chem; 2019 Jun; 80():409-418. PubMed ID: 31128452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel procedure for statistical inference and verification of gene regulatory subnetwork.
    Gong H; Klinger J; Damazyn K; Li X; Huang S
    BMC Bioinformatics; 2015; 16 Suppl 7(Suppl 7):S7. PubMed ID: 25952938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural influence of gene networks on their inference: analysis of C3NET.
    Altay G; Emmert-Streib F
    Biol Direct; 2011 Jun; 6():31. PubMed ID: 21696592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.