BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 22796827)

  • 1. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor.
    Fu W; Gudmundsson O; Feist AM; Herjolfsson G; Brynjolfsson S; Palsson BØ
    J Biotechnol; 2012 Oct; 161(3):242-9. PubMed ID: 22796827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor.
    Chiu SY; Kao CY; Chen CH; Kuan TC; Ong SC; Lin CS
    Bioresour Technol; 2008 Jun; 99(9):3389-96. PubMed ID: 17904359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of optimum specific light intensity per cell on a high-cell-density continuous culture of Chlorella zofingiensis not limited by nutrients or CO₂.
    Imaizumi Y; Nagao N; Yusoff FM; Taguchi S; Toda T
    Bioresour Technol; 2014 Jun; 162():53-9. PubMed ID: 24747382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous microalgae cultivation in a photobioreactor.
    Tang H; Chen M; Ng KY; Salley SO
    Biotechnol Bioeng; 2012 Oct; 109(10):2468-74. PubMed ID: 22488253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors.
    Feng P; Deng Z; Hu Z; Fan L
    Bioresour Technol; 2011 Nov; 102(22):10577-84. PubMed ID: 21955881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance.
    Cuaresma M; Janssen M; Vílchez C; Wijffels RH
    Biotechnol Bioeng; 2009 Oct; 104(2):352-9. PubMed ID: 19517522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel optical panel photobioreactor for cultivation of microalgae.
    Choi HJ; Lee JM; Lee SM
    Water Sci Technol; 2013; 67(11):2543-8. PubMed ID: 23752387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep-sea water supplements.
    Chen CY; Chang HY
    Biotechnol J; 2016 Mar; 11(3):356-62. PubMed ID: 26632521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor.
    Blanken W; Janssen M; Cuaresma M; Libor Z; Bhaiji T; Wijffels RH
    Biotechnol Bioeng; 2014 Dec; 111(12):2436-45. PubMed ID: 24895246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal.
    Min M; Wang L; Li Y; Mohr MJ; Hu B; Zhou W; Chen P; Ruan R
    Appl Biochem Biotechnol; 2011 Sep; 165(1):123-37. PubMed ID: 21494756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar-stimulated CO
    Fu W; Gudmundsson S; Wichuk K; Palsson S; Palsson BO; Salehi-Ashtiani K; Brynjólfsson S
    Sci Total Environ; 2019 Mar; 654():275-283. PubMed ID: 30445327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed.
    Han F; Huang J; Li Y; Wang W; Wang J; Fan J; Shen G
    Bioresour Technol; 2012 Aug; 118():431-7. PubMed ID: 22717560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.
    Hindersin S; Leupold M; Kerner M; Hanelt D
    Bioprocess Biosyst Eng; 2013 Mar; 36(3):345-55. PubMed ID: 22847362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.
    Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomass production.
    Papazi A; Makridis P; Divanach P; Kotzabasis K
    Physiol Plant; 2008 Mar; 132(3):338-49. PubMed ID: 18275465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microdroplet photobioreactor for the photoautotrophic culture of microalgal cells.
    Sung YJ; Kim JY; Bong KW; Sim SJ
    Analyst; 2016 Feb; 141(3):989-98. PubMed ID: 26673975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation.
    Liao Q; Li L; Chen R; Zhu X
    Bioresour Technol; 2014 Jun; 161():186-91. PubMed ID: 24704839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors.
    Kumar K; Das D
    Bioresour Technol; 2012 Jul; 116():307-13. PubMed ID: 22525259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.