These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22796886)

  • 1. Localized and sustained delivery of fibroblast growth factor-2 from a nanoparticle-hydrogel composite for treatment of spinal cord injury.
    Kang CE; Baumann MD; Tator CH; Shoichet MS
    Cells Tissues Organs; 2013; 197(1):55-63. PubMed ID: 22796886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord blood flow and blood vessel permeability measured by dynamic computed tomography imaging in rats after localized delivery of fibroblast growth factor.
    Kang CE; Clarkson R; Tator CH; Yeung IW; Shoichet MS
    J Neurotrauma; 2010 Nov; 27(11):2041-53. PubMed ID: 20799884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury.
    Baumann MD; Kang CE; Tator CH; Shoichet MS
    Biomaterials; 2010 Oct; 31(30):7631-9. PubMed ID: 20656347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ethylene glycol) modification enhances penetration of fibroblast growth factor 2 to injured spinal cord tissue from an intrathecal delivery system.
    Kang CE; Tator CH; Shoichet MS
    J Control Release; 2010 May; 144(1):25-31. PubMed ID: 20114065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced neurotrophin-3 bioactivity and release from a nanoparticle-loaded composite hydrogel.
    Stanwick JC; Baumann MD; Shoichet MS
    J Control Release; 2012 Jun; 160(3):666-75. PubMed ID: 22510446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new paradigm for local and sustained release of therapeutic molecules to the injured spinal cord for neuroprotection and tissue repair.
    Kang CE; Poon PC; Tator CH; Shoichet MS
    Tissue Eng Part A; 2009 Mar; 15(3):595-604. PubMed ID: 18991489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats.
    Kojima A; Tator CH
    J Neurotrauma; 2002 Feb; 19(2):223-38. PubMed ID: 11893024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrathecal drug delivery strategy is safe and efficacious for localized delivery to the spinal cord.
    Shoichet MS; Tator CH; Poon P; Kang C; Baumann MD
    Prog Brain Res; 2007; 161():385-92. PubMed ID: 17618992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord.
    Jimenez Hamann MC; Tator CH; Shoichet MS
    Exp Neurol; 2005 Jul; 194(1):106-19. PubMed ID: 15899248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury.
    Wang YC; Wu YT; Huang HY; Lin HI; Lo LW; Tzeng SF; Yang CS
    Biomaterials; 2008 Dec; 29(34):4546-53. PubMed ID: 18774604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of intrathecal injection of a hyaluronan-based hydrogel on inflammation, scarring and neurobehavioural outcomes in a rat model of severe spinal cord injury associated with arachnoiditis.
    Austin JW; Kang CE; Baumann MD; DiDiodato L; Satkunendrarajah K; Wilson JR; Stanisz GJ; Shoichet MS; Fehlings MG
    Biomaterials; 2012 Jun; 33(18):4555-64. PubMed ID: 22459192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord.
    Gupta D; Tator CH; Shoichet MS
    Biomaterials; 2006 Apr; 27(11):2370-9. PubMed ID: 16325904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel.
    Mothe AJ; Tam RY; Zahir T; Tator CH; Shoichet MS
    Biomaterials; 2013 May; 34(15):3775-83. PubMed ID: 23465486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An anti-inflammatory peptide and brain-derived neurotrophic factor-modified hyaluronan-methylcellulose hydrogel promotes nerve regeneration in rats with spinal cord injury.
    He Z; Zang H; Zhu L; Huang K; Yi T; Zhang S; Cheng S
    Int J Nanomedicine; 2019; 14():721-732. PubMed ID: 30705588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and optimization of PLGA microparticles for controlled and local delivery of Neuregulin-1 in traumatic spinal cord injury.
    Santhosh KT; Alizadeh A; Karimi-Abdolrezaee S
    J Control Release; 2017 Sep; 261():147-162. PubMed ID: 28668379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrathecal epidermal growth factor and fibroblast growth factor-2 exacerbate meningeal proliferative lesions associated with intrathecal catheters.
    Parr AM; Tator CH
    Neurosurgery; 2007 May; 60(5):926-33; discussion 926-33. PubMed ID: 17460529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased basic fibroblast growth factor expression following contusive spinal cord injury.
    Mocchetti I; Rabin SJ; Colangelo AM; Whittemore SR; Wrathall JR
    Exp Neurol; 1996 Sep; 141(1):154-64. PubMed ID: 8797678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro sustained release of bioactive anti-NogoA, a molecule in clinical development for treatment of spinal cord injury.
    Stanwick JC; Baumann MD; Shoichet MS
    Int J Pharm; 2012 Apr; 426(1-2):284-290. PubMed ID: 22306041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord.
    Elliott Donaghue I; Tator CH; Shoichet MS
    Biomater Sci; 2015 Jan; 3(1):65-72. PubMed ID: 26214190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroprotective effects of basic fibroblast growth factor following spinal cord contusion injury in the rat.
    Lee TT; Green BA; Dietrich WD; Yezierski RP
    J Neurotrauma; 1999 May; 16(5):347-56. PubMed ID: 10369555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.