These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 22796944)
1. Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. Qiu H; Hu C; Gaur NA; Hinnebusch AG EMBO J; 2012 Aug; 31(16):3494-505. PubMed ID: 22796944 [TBL] [Abstract][Full Text] [Related]
2. Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Liu Y; Warfield L; Zhang C; Luo J; Allen J; Lang WH; Ranish J; Shokat KM; Hahn S Mol Cell Biol; 2009 Sep; 29(17):4852-63. PubMed ID: 19581288 [TBL] [Abstract][Full Text] [Related]
3. The recruitment of the Saccharomyces cerevisiae Paf1 complex to active genes requires a domain of Rtf1 that directly interacts with the Spt4-Spt5 complex. Mayekar MK; Gardner RG; Arndt KM Mol Cell Biol; 2013 Aug; 33(16):3259-73. PubMed ID: 23775116 [TBL] [Abstract][Full Text] [Related]
4. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Zhou K; Kuo WH; Fillingham J; Greenblatt JF Proc Natl Acad Sci U S A; 2009 Apr; 106(17):6956-61. PubMed ID: 19365074 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Qiu H; Hu C; Hinnebusch AG Mol Cell; 2009 Mar; 33(6):752-62. PubMed ID: 19328068 [TBL] [Abstract][Full Text] [Related]
6. Spt6 directly interacts with Cdc73 and is required for Paf1 complex occupancy at active genes in Saccharomyces cerevisiae. Ellison MA; Namjilsuren S; Shirra MK; Blacksmith MS; Schusteff RA; Kerr EM; Fang F; Xiang Y; Shi Y; Arndt KM Nucleic Acids Res; 2023 Jun; 51(10):4814-4830. PubMed ID: 36928138 [TBL] [Abstract][Full Text] [Related]
7. Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae. Lindstrom DL; Hartzog GA Genetics; 2001 Oct; 159(2):487-97. PubMed ID: 11606527 [TBL] [Abstract][Full Text] [Related]
8. Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly. Burugula BB; Jeronimo C; Pathak R; Jones JW; Robert F; Govind CK Mol Cell Biol; 2014 Nov; 34(22):4115-29. PubMed ID: 25182531 [TBL] [Abstract][Full Text] [Related]
9. Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control. Pei Y; Schwer B; Shuman S J Biol Chem; 2003 Feb; 278(9):7180-8. PubMed ID: 12475973 [TBL] [Abstract][Full Text] [Related]
10. Conditional depletion of transcriptional kinases Ctk1 and Bur1 and effects on co-transcriptional spliceosome assembly and pre-mRNA splicing. Maudlin IE; Beggs JD RNA Biol; 2021 Nov; 18(sup2):782-793. PubMed ID: 34705599 [TBL] [Abstract][Full Text] [Related]
11. The spt5 C-terminal region recruits yeast 3' RNA cleavage factor I. Mayer A; Schreieck A; Lidschreiber M; Leike K; Martin DE; Cramer P Mol Cell Biol; 2012 Apr; 32(7):1321-31. PubMed ID: 22290438 [TBL] [Abstract][Full Text] [Related]
12. Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5. Pei Y; Shuman S J Biol Chem; 2002 May; 277(22):19639-48. PubMed ID: 11893740 [TBL] [Abstract][Full Text] [Related]
13. The Paf1 complex: platform or player in RNA polymerase II transcription? Jaehning JA Biochim Biophys Acta; 2010; 1799(5-6):379-88. PubMed ID: 20060942 [TBL] [Abstract][Full Text] [Related]
14. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD. Schneider S; Pei Y; Shuman S; Schwer B Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361 [TBL] [Abstract][Full Text] [Related]
15. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. Ding B; LeJeune D; Li S J Biol Chem; 2010 Feb; 285(8):5317-26. PubMed ID: 20042611 [TBL] [Abstract][Full Text] [Related]
16. The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II. Qiu H; Hu C; Wong CM; Hinnebusch AG Mol Cell Biol; 2006 Apr; 26(8):3135-48. PubMed ID: 16581788 [TBL] [Abstract][Full Text] [Related]
17. Kinase Cak1 functionally interacts with the PAF1 complex and phosphatase Ssu72 via kinases Ctk1 and Bur1. Ganem C; Miled C; Facca C; Valay JG; Labesse G; Ben Hassine S; Mann C; Faye G Mol Genet Genomics; 2006 Feb; 275(2):136-47. PubMed ID: 16362371 [TBL] [Abstract][Full Text] [Related]
18. Crystal Structure of the Core Module of the Yeast Paf1 Complex. Chen F; Liu B; Zeng J; Guo L; Ge X; Feng W; Li DF; Zhou H; Long J J Mol Biol; 2022 Jan; 434(2):167369. PubMed ID: 34852272 [TBL] [Abstract][Full Text] [Related]
19. Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate. García A; Collin A; Calvo O Mol Biol Cell; 2012 Nov; 23(21):4297-312. PubMed ID: 22973055 [TBL] [Abstract][Full Text] [Related]
20. Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Wier AD; Mayekar MK; Héroux A; Arndt KM; VanDemark AP Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17290-5. PubMed ID: 24101474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]