These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22796957)

  • 1. Measuring and comparing structural fluctuation patterns in large protein datasets.
    Fuglebakk E; Echave J; Reuter N
    Bioinformatics; 2012 Oct; 28(19):2431-40. PubMed ID: 22796957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality assessment of protein model-structures using evolutionary conservation.
    Kalman M; Ben-Tal N
    Bioinformatics; 2010 May; 26(10):1299-307. PubMed ID: 20385730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Real-Valued Protein Residue Fluctuation Using FlexPred.
    Peterson L; Jamroz M; Kolinski A; Kihara D
    Methods Mol Biol; 2017; 1484():175-186. PubMed ID: 27787827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores.
    Wilson CA; Kreychman J; Gerstein M
    J Mol Biol; 2000 Mar; 297(1):233-49. PubMed ID: 10704319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting similarities among distant homologous proteins by comparison of domain flexibilities.
    Pandini A; Mauri G; Bordogna A; Bonati L
    Protein Eng Des Sel; 2007 Jun; 20(6):285-99. PubMed ID: 17573407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithms for optimal protein structure alignment.
    Poleksic A
    Bioinformatics; 2009 Nov; 25(21):2751-6. PubMed ID: 19734152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuse: multiple network alignment via data fusion.
    Gligorijević V; Malod-Dognin N; Pržulj N
    Bioinformatics; 2016 Apr; 32(8):1195-203. PubMed ID: 26668003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A classification of disulfide patterns and its relationship to protein structure and function.
    Gupta A; Van Vlijmen HW; Singh J
    Protein Sci; 2004 Aug; 13(8):2045-58. PubMed ID: 15273305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Searching protein 3-D structures for optimal structure alignment using intelligent algorithms and data structures.
    Novosád T; Snášel V; Abraham A; Yang JY
    IEEE Trans Inf Technol Biomed; 2010 Nov; 14(6):1378-86. PubMed ID: 20876026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using entropy maximization to understand the determinants of structural dynamics beyond native contact topology.
    Lezon TR; Bahar I
    PLoS Comput Biol; 2010 Jun; 6(6):e1000816. PubMed ID: 20585542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensemble-based evaluation for protein structure models.
    Jamroz M; Kolinski A; Kihara D
    Bioinformatics; 2016 Jun; 32(12):i314-i321. PubMed ID: 27307633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating protein structural dynamics and evolutionary analysis with Bio3D.
    Skjærven L; Yao XQ; Scarabelli G; Grant BJ
    BMC Bioinformatics; 2014 Dec; 15(1):399. PubMed ID: 25491031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partitioning and correlating subgroup characteristics from Aligned Pattern Clusters.
    Lee ES; Whelan FJ; Bowdish DM; Wong AK
    Bioinformatics; 2016 Aug; 32(16):2427-34. PubMed ID: 27153647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of methods for evaluation of protein models against native structures.
    Olechnovič K; Monastyrskyy B; Kryshtafovych A; Venclovas Č
    Bioinformatics; 2019 Mar; 35(6):937-944. PubMed ID: 30169622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of structurally conserved residues of proteins in absence of structural homologs using neural network ensemble.
    Pugalenthi G; Tang K; Suganthan PN; Chakrabarti S
    Bioinformatics; 2009 Jan; 25(2):204-10. PubMed ID: 19038986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics alignment: comparison of protein dynamics in the SCOP database.
    Tobi D
    Proteins; 2012 Apr; 80(4):1167-76. PubMed ID: 22275069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KScons: a Bayesian approach for protein residue contact prediction using the knob-socket model of protein tertiary structure.
    Li Q; Dahl DB; Vannucci M; Joo H; Tsai JW
    Bioinformatics; 2016 Dec; 32(24):3774-3781. PubMed ID: 27559156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural SCOP superfamily level classification using unsupervised machine learning.
    Angadi UB; Venkatesulu M
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):601-8. PubMed ID: 21844638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability of the Cyclin-Dependent Kinase 2 Flexibility Without Significant Change in the Initial Conformation of the Protein or Its Environment; a Computational Study.
    Taghizadeh M; Goliaei B; Madadkar-Sobhani A
    Iran J Biotechnol; 2016 Jun; 14(2):1-12. PubMed ID: 28959320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of protein-binding sites within families of proteins.
    Korkin D; Davis FP; Sali A
    Protein Sci; 2005 Sep; 14(9):2350-60. PubMed ID: 16081657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.