These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22797214)

  • 1. Structure and electrochemical applications of boron-doped graphitized carbon nanofibers.
    Yeo JS; Jang SM; Miyawaki J; An B; Mochida I; Rhee CK; Yoon SH
    Nanotechnology; 2012 Aug; 23(31):315602. PubMed ID: 22797214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of Microstructure Change of Carbon Nanofibers as Binder-Free Anode for High-Performance Lithium-Ion Batteries.
    Wang T; Shi S; Li Y; Zhao M; Chang X; Wu D; Wang H; Peng L; Wang P; Yang G
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33091-33101. PubMed ID: 27934176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of microstructure of carbon nanofibers for amperometric detection of hydrogen peroxide.
    Li Z; Cui X; Zheng J; Wang Q; Lin Y
    Anal Chim Acta; 2007 Aug; 597(2):238-44. PubMed ID: 17683735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Boron Doping on the Interlayer Spacing of Graphite.
    Bao C; Zeng Q; Li F; Shi L; Wu W; Yang L; Chen Y; Liu H
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode.
    Zeng L; Pan F; Li W; Jiang Y; Zhong X; Yu Y
    Nanoscale; 2014 Aug; 6(16):9579-87. PubMed ID: 25008943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li-O2 Batteries.
    Wu F; Xing Y; Li L; Qian J; Qu W; Wen J; Miller D; Ye Y; Chen R; Amine K; Lu J
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23635-45. PubMed ID: 27549204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries.
    Wu ZS; Ren W; Xu L; Li F; Cheng HM
    ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Electrochemical Properties of Ru/PC/SiO₂/Carbon Nanofiber Composites as Anode Materials in Lithium Secondary Batteries.
    Hwang E; Hyun Y; Lee CS
    J Nanosci Nanotechnol; 2020 Mar; 20(3):1622-1630. PubMed ID: 31492324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanofibers modified with heteroatoms as metal-free catalysts for the oxidative dehydrogenation of propane.
    Marco Y; Roldán L; Muñoz E; García-Bordejé E
    ChemSusChem; 2014 Sep; 7(9):2496-504. PubMed ID: 25138580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and electrochemical studies of electrospun phosphorus doped porous carbon nanofibers.
    Liu C; Shi G; Wang G; Mishra P; Jia S; Jiang X; Zhang P; Dong Y; Wang Z
    RSC Adv; 2019 Feb; 9(12):6898-6906. PubMed ID: 35518511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption, diffusion, and recombination of hydrogen on pure and boron-doped graphite surfaces.
    Ferro Y; Marinelli F; Jelea A; Allouche A
    J Chem Phys; 2004 Jun; 120(24):11882-8. PubMed ID: 15268222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers.
    Subramanian V; Zhu H; Wei B
    J Phys Chem B; 2006 Apr; 110(14):7178-83. PubMed ID: 16599483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol.
    Zhang P; Shao C; Zhang Z; Zhang M; Mu J; Guo Z; Liu Y
    Nanoscale; 2011 Aug; 3(8):3357-63. PubMed ID: 21761072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman spectroscopy of boron-doped single-layer graphene.
    Kim YA; Fujisawa K; Muramatsu H; Hayashi T; Endo M; Fujimori T; Kaneko K; Terrones M; Behrends J; Eckmann A; Casiraghi C; Novoselov KS; Saito R; Dresselhaus MS
    ACS Nano; 2012 Jul; 6(7):6293-300. PubMed ID: 22695033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pt/Carbon nanofiber nanocomposites as electrocatalysts for direct methanol fuel cells: prominent effects of carbon nanofiber nanostructures.
    Li Z; Cui X; Zhang X; Wang Q; Shao Y; Lin Y
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2316-23. PubMed ID: 19437970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of thermal annealing on the Li(+) intercalation properties of V(2)O(5) x nH(2)O xerogel films.
    Wang Y; Shang H; Chou T; Cao G
    J Phys Chem B; 2005 Jun; 109(22):11361-6. PubMed ID: 16852388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes.
    Tu J; Wang J; Li S; Song WL; Wang M; Zhu H; Jiao S
    Nanoscale; 2019 Jul; 11(26):12537-12546. PubMed ID: 31169859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast preparation of PtRu catalysts supported on carbon nanofibers by the microwave-polyol method and their application to fuel cells.
    Tsuji M; Kubokawa M; Yano R; Miyamae N; Tsuji T; Jun MS; Hong S; Lim S; Yoon SH; Mochida I
    Langmuir; 2007 Jan; 23(2):387-90. PubMed ID: 17209582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: controlled fabrication and high capacitive behavior.
    Mu J; Chen B; Guo Z; Zhang M; Zhang Z; Shao C; Liu Y
    J Colloid Interface Sci; 2011 Apr; 356(2):706-12. PubMed ID: 21300365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.