These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 22797226)

  • 1. Polyphenols and fatty acids responsible for anti-cyanobacterial allelopathic effects of submerged macrophyte Myriophyllum spicatum.
    Nakai S; Zou G; Okuda T; Nishijima W; Hosomi M; Okada M
    Water Sci Technol; 2012; 66(5):993-9. PubMed ID: 22797226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion.
    Zhu J; Liu B; Wang J; Gao Y; Wu Z
    Aquat Toxicol; 2010 Jun; 98(2):196-203. PubMed ID: 20451264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II.
    Leu E; Krieger-Liszkay A; Goussias C; Gross EM
    Plant Physiol; 2002 Dec; 130(4):2011-8. PubMed ID: 12481084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Allelopathic influence of Myriophyllum spicatum on the photosynthetic efficiency of Microcystis aeruginosa].
    Zhu JY; Liu BY; Wang J; Gao YN; Ge FJ; Liang W; Zhang LP; Wu ZB
    Huan Jing Ke Xue; 2011 Oct; 32(10):2904-8. PubMed ID: 22279899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher resistance of a microcystin (MC)-producing cyanobacterium, Microcystis, to the submerged macrophyte Myriophyllum spicatum.
    Gao Y; Yang H; Li L; Gao X; Li M; Dong J; Zhang M; Zhang J; Li X; Lu Z; Burford MA
    Environ Sci Pollut Res Int; 2023 May; 30(23):63941-63952. PubMed ID: 37055695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allelopathic Effects of Myriophyllum aquaticum on Two Cyanobacteria of Anabaena flos-aquae and Microcystis aeruginosa.
    Wang H; Liu F; Luo P; Li Z; Zheng L; Wang H; Zou D; Wu J
    Bull Environ Contam Toxicol; 2017 Apr; 98(4):556-561. PubMed ID: 28184984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella.
    Choi C; Bareiss C; Walenciak O; Gross EM
    J Chem Ecol; 2002 Nov; 28(11):2245-56. PubMed ID: 12523565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community.
    Wendt-Rasch L; Van den Brink PJ; Crum SJ; Woin P
    Ecotoxicol Environ Saf; 2004 Mar; 57(3):383-98. PubMed ID: 15041261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the release routes of allelochemicals from Pistia stratiotes Linn., and its anti-cyanobacteria mechanisms on Microcystis aeruginosa.
    Wu X; Wu H; Ye J; Zhong B
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18994-9001. PubMed ID: 26233747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous-release beads of natural allelochemicals for the long-term control of cyanobacterial growth: Preparation, release dynamics and inhibitory effects.
    Huang H; Xiao X; Lin F; Grossart HP; Nie Z; Sun L; Xu C; Shi J
    Water Res; 2016 May; 95():113-23. PubMed ID: 26986500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of reactive oxygen species in cyanobacteria and green algae induced by allelochemicals of submerged macrophytes.
    Wang J; Zhu J; Liu S; Liu B; Gao Y; Wu Z
    Chemosphere; 2011 Oct; 85(6):977-82. PubMed ID: 21757220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allelopathic Effects on Microcystis aeruginosa and Allelochemical Identification in the Cuture Solutions of Typical Artificial Floating-Bed Plants.
    Zhou L; Chen G; Cui N; Pan Q; Song X; Zou G
    Bull Environ Contam Toxicol; 2019 Jan; 102(1):115-121. PubMed ID: 30483838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient bioextraction and microalgae growth inhibition using submerged macrophyte Myriophyllum spicatum in a low salinity area of East China Sea.
    Liu Q; Sun B; Huo Y; Liu M; Shi J; Jiang T; Zhang Q; Tang C; Bi H; He P
    Mar Pollut Bull; 2018 Feb; 127():67-72. PubMed ID: 29475710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Effects of Allelopathic Polyphenols on
    Huang S; Zhu J; Zhang L; Peng X; Zhang X; Ge F; Liu B; Wu Z
    Front Microbiol; 2020; 11():614570. PubMed ID: 33335524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Allelopathic Effects and Allelochemicals of
    Bi YL; Wu SM; Zhou SN; Wu SH; Su H; Bai ZH; Xu SJ
    Huan Jing Ke Xue; 2019 May; 40(5):2265-2270. PubMed ID: 31087865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems.
    Pflugmacher S
    Environ Toxicol; 2002; 17(4):407-13. PubMed ID: 12203964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytotoxic effects of cyanobacteria extract on Lemna minor and Myriophyllum spicatum phyto-tolerance and superoxide dismutase activity.
    Yi D; Yijun Z; Xue B; Zhihui F; Kai C
    Environ Toxicol; 2009 Jun; 24(3):304-8. PubMed ID: 18623078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard.
    Ridvan Sivaci E; Sivaci A; Sökmen M
    Chemosphere; 2004 Sep; 56(11):1043-8. PubMed ID: 15276717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica).
    Jang MH; Ha K; Takamura N
    Toxicon; 2007 Apr; 49(5):727-33. PubMed ID: 17207510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of macrophytes on the growth of bloom-forming cyanobacteria: Systematic review and experiment.
    Maredová N; Altman J; Kaštovský J
    Sci Total Environ; 2021 Oct; 792():148413. PubMed ID: 34153748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.