BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 22797560)

  • 1. The mechanism of beta-adrenergic preconditioning: roles for adenosine and ROS during triggering and mediation.
    Salie R; Moolman JA; Lochner A
    Basic Res Cardiol; 2012 Sep; 107(5):281. PubMed ID: 22797560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of β-adrenergic receptors in the cardioprotective effects of beta-preconditioning (βPC).
    Salie R; Moolman JA; Lochner A
    Cardiovasc Drugs Ther; 2011 Feb; 25(1):31-46. PubMed ID: 21225332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The significance of the washout period in preconditioning.
    Salie R; Lochner A; Loubser DJ
    Cardiovasc Ther; 2017 Jun; 35(3):. PubMed ID: 28118517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation.
    Penna C; Rastaldo R; Mancardi D; Raimondo S; Cappello S; Gattullo D; Losano G; Pagliaro P
    Basic Res Cardiol; 2006 Mar; 101(2):180-9. PubMed ID: 16450075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinases and phosphatases in ischaemic preconditioning: a re-evaluation.
    Fan WJ; van Vuuren D; Genade S; Lochner A
    Basic Res Cardiol; 2010 Jul; 105(4):495-511. PubMed ID: 20127248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of myocardial apoptosis by ischaemic and beta-adrenergic preconditioning is dependent on p38 MAPK.
    Moolman JA; Hartley S; Van Wyk J; Marais E; Lochner A
    Cardiovasc Drugs Ther; 2006 Feb; 20(1):13-25. PubMed ID: 16552474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling.
    Penna C; Mancardi D; Rastaldo R; Losano G; Pagliaro P
    Cardiovasc Res; 2007 Jul; 75(1):168-77. PubMed ID: 17400201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localizing extracellular signal-regulated kinase (ERK) in pharmacological preconditioning's trigger pathway.
    Philipp S; Critz SD; Cui L; Solodushko V; Cohen MV; Downey JM
    Basic Res Cardiol; 2006 Mar; 101(2):159-67. PubMed ID: 16283591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of tyrosine kinase and protein kinase C in infarct size limitation by repetitive ischemic preconditioning in the rat.
    Tanno M; Tsuchida A; Nozawa Y; Matsumoto T; Hasegawa T; Miura T; Shimamoto K
    J Cardiovasc Pharmacol; 2000 Mar; 35(3):345-52. PubMed ID: 10710117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatidylinositol 3-kinase and ERK1/2 are not involved in adenosine A1, A2A or A3 receptor-mediated preconditioning in rat ventricle strips.
    Button L; Mireylees SE; Germack R; Dickenson JM
    Exp Physiol; 2005 Sep; 90(5):747-54. PubMed ID: 15964902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p38 MAPK activation triggers pharmacologically-induced beta-adrenergic preconditioning, but not ischaemic preconditioning.
    Marais E; Genade S; Strijdom H; Moolman JA; Lochner A
    J Mol Cell Cardiol; 2001 Dec; 33(12):2157-77. PubMed ID: 11735262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial KATP channel-dependent and -independent phases of ischemic preconditioning against myocardial infarction in the rat.
    Nozawa Y; Miura T; Miki T; Ohnuma Y; Yano T; Shimamoto K
    Basic Res Cardiol; 2003 Feb; 98(1):50-8. PubMed ID: 12494269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of ATP-dependent potassium channels is a trigger but not a mediator of ischaemic preconditioning in pigs.
    Schulz R; Gres P; Heusch G
    Br J Pharmacol; 2003 May; 139(1):65-72. PubMed ID: 12746224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial K(ATP) channel opening is important during index ischemia and following myocardial reperfusion in ischemic preconditioned rat hearts.
    Fryer RM; Hsu AK; Gross GJ
    J Mol Cell Cardiol; 2001 Apr; 33(4):831-4. PubMed ID: 11273735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CREB activation and ischaemic preconditioning.
    Marais E; Genade S; Lochner A
    Cardiovasc Drugs Ther; 2008 Feb; 22(1):3-17. PubMed ID: 18205034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of mitochondrial ATP-sensitive K channels and PKC in anti-infarct tolerance afforded by adenosine A1 receptor activation.
    Miura T; Liu Y; Kita H; Ogawa T; Shimamoto K
    J Am Coll Cardiol; 2000 Jan; 35(1):238-45. PubMed ID: 10636286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upstream signaling of protein kinase C-epsilon in xenon-induced pharmacological preconditioning. Implication of mitochondrial adenosine triphosphate dependent potassium channels and phosphatidylinositol-dependent kinase-1.
    Weber NC; Toma O; Damla H; Wolter JI; Schlack W; Preckel B
    Eur J Pharmacol; 2006 Jun; 539(1-2):1-9. PubMed ID: 16716295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opioid receptor stimulation acts as mediator of protection in ischaemic preconditioning.
    Genade S; Moolman JA; Lochner A
    Cardiovasc J S Afr; 2001; 12(1):8-16. PubMed ID: 11447487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of kappa opioid receptors in cardioprotection against ischemia: the signaling mechanisms.
    Wong TM; Wu S
    Sheng Li Xue Bao; 2003 Apr; 55(2):115-20. PubMed ID: 12715097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Late preconditioning elicited by activation of adenosine A(3) receptor in heart: role of NF- kappa B, iNOS and mitochondrial K(ATP) channel.
    Zhao TC; Kukreja RC
    J Mol Cell Cardiol; 2002 Mar; 34(3):263-77. PubMed ID: 11945020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.