These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 22797577)
1. Theory of electrocatalysis: hydrogen evolution and more. Santos E; Quaino P; Schmickler W Phys Chem Chem Phys; 2012 Aug; 14(32):11224-33. PubMed ID: 22797577 [TBL] [Abstract][Full Text] [Related]
2. Alignment of electronic energy levels at electrochemical interfaces. Cheng J; Sprik M Phys Chem Chem Phys; 2012 Aug; 14(32):11245-67. PubMed ID: 22806244 [TBL] [Abstract][Full Text] [Related]
3. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Skúlason E; Karlberg GS; Rossmeisl J; Bligaard T; Greeley J; Jónsson H; Nørskov JK Phys Chem Chem Phys; 2007 Jul; 9(25):3241-50. PubMed ID: 17579732 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen electrocatalysis on single crystals and on nanostructured electrodes. Santos E; Hindelang P; Quaino P; Schulz EN; Soldano G; Schmickler W Chemphyschem; 2011 Aug; 12(12):2274-9. PubMed ID: 21710676 [TBL] [Abstract][Full Text] [Related]
5. A first-principles study of molecular oxygen dissociation at an electrode surface: a comparison of potential variation and coadsorption effects. Wasileski SA; Janik MJ Phys Chem Chem Phys; 2008 Jul; 10(25):3613-27. PubMed ID: 18563222 [TBL] [Abstract][Full Text] [Related]
6. Structural requirements and reaction pathways in dimethyl ether combustion catalyzed by supported Pt clusters. Ishikawa A; Neurock M; Iglesia E J Am Chem Soc; 2007 Oct; 129(43):13201-12. PubMed ID: 17915866 [TBL] [Abstract][Full Text] [Related]
7. Frontier orbital engineering of photo-hydrogen-evolving molecular devices: a clear relationship between the H2-evolving activity and the energy level of the LUMO. Masaoka S; Mukawa Y; Sakai K Dalton Trans; 2010 Jul; 39(25):5868-76. PubMed ID: 20502844 [TBL] [Abstract][Full Text] [Related]
8. Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes. Schneider A; Colmenares L; Seidel YE; Jusys Z; Wickman B; Kasemo B; Behm RJ Phys Chem Chem Phys; 2008 Apr; 10(14):1931-43. PubMed ID: 18368186 [TBL] [Abstract][Full Text] [Related]
9. Calculating reversible potentials for Pt-H and Pt-OH bond formation in basic solutions. Cai Y; Anderson AB J Phys Chem B; 2005 Apr; 109(15):7557-63. PubMed ID: 16851868 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic study of the electrochemical oxygen reduction reaction on Pt(111) using density functional theory. Hyman MP; Medlin JW J Phys Chem B; 2006 Aug; 110(31):15338-44. PubMed ID: 16884253 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of naphthalene and quinoline on Pt, Pd and Rh: a DFT study. Santarossa G; Iannuzzi M; Vargas A; Baiker A Chemphyschem; 2008 Feb; 9(3):401-13. PubMed ID: 18236490 [TBL] [Abstract][Full Text] [Related]
12. NO Chemisorption on Pt(111), Rh/Pt(111), and Pd/Pt(111). Tang H; Trout BL J Phys Chem B; 2005 Sep; 109(37):17630-4. PubMed ID: 16853256 [TBL] [Abstract][Full Text] [Related]
13. Density functional theory study of the electrochemical interface between a Pt electrode and an aqueous electrolyte using an implicit solvent method. Sakong S; Naderian M; Mathew K; Hennig RG; Groß A J Chem Phys; 2015 Jun; 142(23):234107. PubMed ID: 26093550 [TBL] [Abstract][Full Text] [Related]
14. A band dispersion mechanism for Pt alloy compositional tuning of linear bound CO stretching frequencies. Dimakis N; Iddir H; Díaz-Morales RR; Liu R; Bunker G; Chung EH; Smotkin ES J Phys Chem B; 2005 Feb; 109(5):1839-48. PubMed ID: 16851166 [TBL] [Abstract][Full Text] [Related]
15. Modelling energy level alignment at organic interfaces and density functional theory. Flores F; Ortega J; Vázquez H Phys Chem Chem Phys; 2009 Oct; 11(39):8658-75. PubMed ID: 20449007 [TBL] [Abstract][Full Text] [Related]
16. Application of density functional theory to CO tolerance in fuel cells: a brief review. Stolbov S; Alcantara Ortigoza M; Rahman TS J Phys Condens Matter; 2009 Nov; 21(47):474226. PubMed ID: 21832505 [TBL] [Abstract][Full Text] [Related]
17. Charging energy and barrier height of pentacene on Au(111): a local-orbital hybrid-functional density functional theory approach. Pieczyrak B; Abad E; Flores F; Ortega J J Chem Phys; 2011 Aug; 135(8):084702. PubMed ID: 21895209 [TBL] [Abstract][Full Text] [Related]
18. Modeling Potential-Dependent Electrochemical Activation Barriers: Revisiting the Alkaline Hydrogen Evolution Reaction. Li J; Stenlid JH; Ludwig T; Lamoureux PS; Abild-Pedersen F J Am Chem Soc; 2021 Nov; 143(46):19341-19355. PubMed ID: 34752077 [TBL] [Abstract][Full Text] [Related]
19. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Zheng Y; Jiao Y; Jaroniec M; Qiao SZ Angew Chem Int Ed Engl; 2015 Jan; 54(1):52-65. PubMed ID: 25384712 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical adsorption of OH on Pt(111) in alkaline solutions: combining DFT and molecular dynamics. Pinto LM; Quaino P; Arce MD; Santos E; Schmickler W Chemphyschem; 2014 Jul; 15(10):2003-9. PubMed ID: 24723289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]