BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22797655)

  • 1. Application of the Gini correlation coefficient to infer regulatory relationships in transcriptome analysis.
    Ma C; Wang X
    Plant Physiol; 2012 Sep; 160(1):192-203. PubMed ID: 22797655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Step-by-Step Construction of Gene Co-expression Networks from High-Throughput Arabidopsis RNA Sequencing Data.
    Contreras-López O; Moyano TC; Soto DC; Gutiérrez RA
    Methods Mol Biol; 2018; 1761():275-301. PubMed ID: 29525965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De Novo Plant Transcriptome Assembly and Annotation Using Illumina RNA-Seq Reads.
    Kerr SC; Gaiti F; Tanurdzic M
    Methods Mol Biol; 2019; 1933():265-275. PubMed ID: 30945191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential correlation for sequencing data.
    Siska C; Kechris K
    BMC Res Notes; 2017 Jan; 10(1):54. PubMed ID: 28103954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ranking genome-wide correlation measurements improves microarray and RNA-seq based global and targeted co-expression networks.
    Liesecke F; Daudu D; Dugé de Bernonville R; Besseau S; Clastre M; Courdavault V; de Craene JO; Crèche J; Giglioli-Guivarc'h N; Glévarec G; Pichon O; Dugé de Bernonville T
    Sci Rep; 2018 Jul; 8(1):10885. PubMed ID: 30022075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing a transcriptome next-generation sequencing project for a nonmodel plant species.
    Strickler SR; Bombarely A; Mueller LA
    Am J Bot; 2012 Feb; 99(2):257-66. PubMed ID: 22268224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of RNA-seq- and microarray-derived coexpression networks in Arabidopsis thaliana.
    Giorgi FM; Del Fabbro C; Licausi F
    Bioinformatics; 2013 Mar; 29(6):717-24. PubMed ID: 23376351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparisons of computational methods for differential alternative splicing detection using RNA-seq in plant systems.
    Liu R; Loraine AE; Dickerson JA
    BMC Bioinformatics; 2014 Dec; 15(1):364. PubMed ID: 25511303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data.
    Zhu M; Dahmen JL; Stacey G; Cheng J
    BMC Bioinformatics; 2013 Sep; 14():278. PubMed ID: 24053776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in Arabidopsis thaliana.
    Ahmed F; Senthil-Kumar M; Lee S; Dai X; Mysore KS; Zhao PX
    RNA Biol; 2014; 11(11):1414-29. PubMed ID: 25629686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Isolation and Analysis of LncRNAs from Gametophytes of Maize.
    Han L; Li L; Muehlbauer GJ; Fowler JE; Evans MMS
    Methods Mol Biol; 2019; 1933():67-86. PubMed ID: 30945179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling.
    Klepikova AV; Kasianov AS; Gerasimov ES; Logacheva MD; Penin AA
    Plant J; 2016 Dec; 88(6):1058-1070. PubMed ID: 27549386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico evaluation of predicted regulatory interactions in Arabidopsis thaliana.
    Nero D; Katari MS; Kelfer J; Tranchina D; Coruzzi GM
    BMC Bioinformatics; 2009 Dec; 10():435. PubMed ID: 20025756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyzing the meiotic transcriptome using isolated meiocytes of Arabidopsis thaliana.
    Chen C; Retzel EF
    Methods Mol Biol; 2013; 990():203-13. PubMed ID: 23559216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AtCAST3.0 update: a web-based tool for analysis of transcriptome data by searching similarities in gene expression profiles.
    Kakei Y; Shimada Y
    Plant Cell Physiol; 2015 Jan; 56(1):e7. PubMed ID: 25505006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. tuxnet: a simple interface to process RNA sequencing data and infer gene regulatory networks.
    Spurney RJ; Van den Broeck L; Clark NM; Fisher AP; de Luis Balaguer MA; Sozzani R
    Plant J; 2020 Feb; 101(3):716-730. PubMed ID: 31571287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-Seq.
    Miller JA; Menon V; Goldy J; Kaykas A; Lee CK; Smith KA; Shen EH; Phillips JW; Lein ES; Hawrylycz MJ
    BMC Genomics; 2014 Feb; 15(1):154. PubMed ID: 24564186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates.
    Yoon S; Kim SY; Nam D
    PLoS One; 2016; 11(11):e0165919. PubMed ID: 27829002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput RNA-seq for allelic or locus-specific expression analysis in Arabidopsis-related species, hybrids, and allotetraploids.
    Ng DW; Shi X; Nah G; Chen ZJ
    Methods Mol Biol; 2014; 1112():33-48. PubMed ID: 24478006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data.
    Kvam VM; Liu P; Si Y
    Am J Bot; 2012 Feb; 99(2):248-56. PubMed ID: 22268221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.