These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 22797694)

  • 1. Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion.
    Bannerman DM; Bus T; Taylor A; Sanderson DJ; Schwarz I; Jensen V; Hvalby Ø; Rawlins JN; Seeburg PH; Sprengel R
    Nat Neurosci; 2012 Jul; 15(8):1153-9. PubMed ID: 22797694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hippocampal NMDA receptors are important for behavioural inhibition but not for encoding associative spatial memories.
    Taylor AM; Bus T; Sprengel R; Seeburg PH; Rawlins JN; Bannerman DM
    Philos Trans R Soc Lond B Biol Sci; 2014 Jan; 369(1633):20130149. PubMed ID: 24298151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus.
    Niewoehner B; Single FN; Hvalby Ø; Jensen V; Meyer zum Alten Borgloh S; Seeburg PH; Rawlins JN; Sprengel R; Bannerman DM
    Eur J Neurosci; 2007 Feb; 25(3):837-46. PubMed ID: 17313573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel, rapidly acquired and persistent spatial memory task that induces immediate early gene expression.
    Feldman LA; Shapiro ML; Nalbantoglu J
    Behav Brain Funct; 2010 Jul; 6():35. PubMed ID: 20594357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMDA receptor subunit NR2A is required for rapidly acquired spatial working memory but not incremental spatial reference memory.
    Bannerman DM; Niewoehner B; Lyon L; Romberg C; Schmitt WB; Taylor A; Sanderson DJ; Cottam J; Sprengel R; Seeburg PH; Köhr G; Rawlins JN
    J Neurosci; 2008 Apr; 28(14):3623-30. PubMed ID: 18385321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Navigating uncertain waters.
    Mayford M
    Nat Neurosci; 2012 Jul; 15(8):1056-7. PubMed ID: 22837031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory.
    Lee I; Kesner RP
    Nat Neurosci; 2002 Feb; 5(2):162-8. PubMed ID: 11780144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampal Subregion Transcriptomic Profiles Reflect Strategy Selection during Cognitive Aging.
    Smith G; Rani A; Kumar A; Barter J; Foster TC
    J Neurosci; 2020 Jun; 40(25):4888-4899. PubMed ID: 32376783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-acquisition hippocampal NMDA receptor blockade sustains retention of spatial reference memory in Morris water maze.
    Shinohara K; Hata T
    Behav Brain Res; 2014 Feb; 259():261-7. PubMed ID: 24257072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hippocampal synaptic plasticity, spatial memory and anxiety.
    Bannerman DM; Sprengel R; Sanderson DJ; McHugh SB; Rawlins JN; Monyer H; Seeburg PH
    Nat Rev Neurosci; 2014 Mar; 15(3):181-92. PubMed ID: 24552786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory.
    Tsien JZ; Huerta PT; Tonegawa S
    Cell; 1996 Dec; 87(7):1327-38. PubMed ID: 8980238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockout of NMDARs in CA1 and dentate gyrus fails to impair temporal control of conditioned behavior in mice.
    Strickland JA; Austen JM; Sprengel R; Sanderson DJ
    Hippocampus; 2024 Mar; 34(3):126-140. PubMed ID: 38140716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral Analysis of NMDAR Function in Rodents: Tests of Long-Term Spatial Memory.
    Bannerman DM; Barkus C; Eltokhi A
    Methods Mol Biol; 2024; 2799():107-138. PubMed ID: 38727905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for hippocampal PSA-NCAM and NMDA-NR2B receptor function in flavonoid-induced spatial memory improvements in young rats.
    Rendeiro C; Foley A; Lau VC; Ring R; Rodriguez-Mateos A; Vauzour D; Williams CM; Regan C; Spencer JP
    Neuropharmacology; 2014 Apr; 79(100):335-44. PubMed ID: 24333331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5.
    Steele RJ; Morris RG
    Hippocampus; 1999; 9(2):118-36. PubMed ID: 10226773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice.
    McHugh TJ; Blum KI; Tsien JZ; Tonegawa S; Wilson MA
    Cell; 1996 Dec; 87(7):1339-49. PubMed ID: 8980239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5-HT(1A) and NMDA receptors interact in the rat medial septum and modulate hippocampal-dependent spatial learning.
    Elvander-Tottie E; Eriksson TM; Sandin J; Ogren SO
    Hippocampus; 2009 Dec; 19(12):1187-98. PubMed ID: 19309036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hippocampal activation during the recall of remote spatial memories in radial maze tasks.
    Schlesiger MI; Cressey JC; Boublil B; Koenig J; Melvin NR; Leutgeb JK; Leutgeb S
    Neurobiol Learn Mem; 2013 Nov; 106():324-33. PubMed ID: 23742919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory.
    Winkle CC; Olsen RH; Kim H; Moy SS; Song J; Gupton SL
    J Neurosci; 2016 May; 36(18):4940-58. PubMed ID: 27147649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of hippocampal NMDA and AMPA receptors in acquisition, formation and retrieval of spatial memory in the Morris water maze.
    Liang KC; Hon W; Tyan YM; Liao WL
    Chin J Physiol; 1994; 37(4):201-12. PubMed ID: 7796636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.