These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 22797694)

  • 61. Disruption of hippocampus-regulated behavioural and cognitive processes by heterozygous constitutive deletion of SynGAP.
    Muhia M; Yee BK; Feldon J; Markopoulos F; Knuesel I
    Eur J Neurosci; 2010 Feb; 31(3):529-43. PubMed ID: 20105235
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Testing hypotheses of spatial learning: the role of NMDA receptors and NMDA-mediated long-term potentiation.
    Cain DP; Saucier D; Boon F
    Behav Brain Res; 1997 Mar; 84(1-2):179-93. PubMed ID: 9079784
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory.
    Blum S; Moore AN; Adams F; Dash PK
    J Neurosci; 1999 May; 19(9):3535-44. PubMed ID: 10212313
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ras inhibitor S-trans, trans-farnesylthiosalicylic acid enhances spatial memory and hippocampal long-term potentiation via up-regulation of NMDA receptor.
    Wang Y; Chen T; Yuan Z; Zhang Y; Zhang B; Zhao L; Chen L
    Neuropharmacology; 2018 Sep; 139():257-267. PubMed ID: 29578035
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Interneuronal NMDA receptors regulate long-term depression and motor learning in the cerebellum.
    Kono M; Kakegawa W; Yoshida K; Yuzaki M
    J Physiol; 2019 Feb; 597(3):903-920. PubMed ID: 30382582
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory.
    Moosmang S; Haider N; Klugbauer N; Adelsberger H; Langwieser N; Müller J; Stiess M; Marais E; Schulla V; Lacinova L; Goebbels S; Nave KA; Storm DR; Hofmann F; Kleppisch T
    J Neurosci; 2005 Oct; 25(43):9883-92. PubMed ID: 16251435
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Functional differentiation and cooperation among the hippocampal subregions in rats to effect spatial memory processes.
    Okada K; Okaichi H
    Behav Brain Res; 2009 Jun; 200(1):181-91. PubMed ID: 19378463
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1.
    Gilbert PE; Kesner RP; Lee I
    Hippocampus; 2001; 11(6):626-36. PubMed ID: 11811656
    [TBL] [Abstract][Full Text] [Related]  

  • 69. GSK-3β deletion in dentate gyrus excitatory neuron impairs synaptic plasticity and memory.
    Liu E; Xie AJ; Zhou Q; Li M; Zhang S; Li S; Wang W; Wang X; Wang Q; Wang JZ
    Sci Rep; 2017 Jul; 7(1):5781. PubMed ID: 28720858
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A double dissociation of subcortical hippocampal efferents for encoding and consolidation/retrieval of spatial information.
    Hunsaker MR; Tran GT; Kesner RP
    Hippocampus; 2008; 18(7):699-709. PubMed ID: 18493950
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hippocampal N-methyl-D-aspartate receptor-mediated encoding and retrieval processes in spatial working memory: delay-interposed radial maze performance in rats.
    Yoshihara T; Ichitani Y
    Neuroscience; 2004; 129(1):1-10. PubMed ID: 15489023
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Complex behavioral strategy and reversal learning in the water maze without NMDA receptor-dependent long-term potentiation.
    Hoh T; Beiko J; Boon F; Weiss S; Cain DP
    J Neurosci; 1999 May; 19(10):RC2. PubMed ID: 10234048
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of environmental enrichment on anxiety responses, spatial memory and cytochrome c oxidase activity in adult rats.
    Sampedro-Piquero P; Zancada-Menendez C; Begega A; Rubio S; Arias JL
    Brain Res Bull; 2013 Sep; 98():1-9. PubMed ID: 23831916
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Acute Melamine Affects Spatial Memory Consolidation via Inhibiting Hippocampal NMDAR-Dependent LTD in Rats.
    An L; Sun W
    Toxicol Sci; 2018 Jun; 163(2):385-396. PubMed ID: 28206646
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Posttraining ablation of adult-generated neurons degrades previously acquired memories.
    Arruda-Carvalho M; Sakaguchi M; Akers KG; Josselyn SA; Frankland PW
    J Neurosci; 2011 Oct; 31(42):15113-27. PubMed ID: 22016545
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An examination of early neural and cognitive alterations in hippocampal-spatial function of ghrelin receptor-deficient rats.
    Cahill SP; Hatchard T; Abizaid A; Holahan MR
    Behav Brain Res; 2014 May; 264():105-15. PubMed ID: 24525421
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hippocampal long-term depression is required for the consolidation of spatial memory.
    Ge Y; Dong Z; Bagot RC; Howland JG; Phillips AG; Wong TP; Wang YT
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16697-702. PubMed ID: 20823230
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dentate gyrus destruction and spatial learning impairment after corticosteroid removal in young and middle-aged rats.
    Conrad CD; Roy EJ
    Hippocampus; 1995; 5(1):1-15. PubMed ID: 7787942
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Increase in syntaxin 1B mRNA in hippocampal and cortical circuits during spatial learning reflects a mechanism of trans-synaptic plasticity involved in establishing a memory trace.
    Davis S; Rodger J; Stéphan A; Hicks A; Mallet J; Laroche S
    Learn Mem; 1998; 5(4-5):375-90. PubMed ID: 10454362
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Rats with hippocampal lesion show impaired learning and memory in the ziggurat task: a new task to evaluate spatial behavior.
    Faraji J; Lehmann H; Metz GA; Sutherland RJ
    Behav Brain Res; 2008 May; 189(1):17-31. PubMed ID: 18192033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.