These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 22797694)

  • 101. Hippocampal synaptic plasticity, spatial memory and anxiety.
    Bannerman DM; Sprengel R; Sanderson DJ; McHugh SB; Rawlins JN; Monyer H; Seeburg PH
    Nat Rev Neurosci; 2014 Mar; 15(3):181-92. PubMed ID: 24552786
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Hippocampal NMDA receptors are important for behavioural inhibition but not for encoding associative spatial memories.
    Taylor AM; Bus T; Sprengel R; Seeburg PH; Rawlins JN; Bannerman DM
    Philos Trans R Soc Lond B Biol Sci; 2014 Jan; 369(1633):20130149. PubMed ID: 24298151
    [TBL] [Abstract][Full Text] [Related]  

  • 103. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory.
    Tsien JZ; Huerta PT; Tonegawa S
    Cell; 1996 Dec; 87(7):1327-38. PubMed ID: 8980238
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade.
    Bannerman DM; Good MA; Butcher SP; Ramsay M; Morris RG
    Nature; 1995 Nov; 378(6553):182-6. PubMed ID: 7477320
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Spatial learning without NMDA receptor-dependent long-term potentiation.
    Saucier D; Cain DP
    Nature; 1995 Nov; 378(6553):186-9. PubMed ID: 7477321
    [TBL] [Abstract][Full Text] [Related]  

  • 106. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity.
    Shipton OA; Paulsen O
    Philos Trans R Soc Lond B Biol Sci; 2014 Jan; 369(1633):20130163. PubMed ID: 24298164
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5.
    Morris RG; Anderson E; Lynch GS; Baudry M
    Nature; 1986 Feb 27-Mar 5; 319(6056):774-6. PubMed ID: 2869411
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Reactivation of hippocampal ensemble memories during sleep.
    Wilson MA; McNaughton BL
    Science; 1994 Jul; 265(5172):676-9. PubMed ID: 8036517
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Comparative behavior. Anxiety-like behavior in crayfish is controlled by serotonin.
    Fossat P; Bacqué-Cazenave J; De Deurwaerdère P; Delbecque JP; Cattaert D
    Science; 2014 Jun; 344(6189):1293-7. PubMed ID: 24926022
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Knowing where and getting there: a human navigation network.
    Maguire EA; Burgess N; Donnett JG; Frackowiak RS; Frith CD; O'Keefe J
    Science; 1998 May; 280(5365):921-4. PubMed ID: 9572740
    [TBL] [Abstract][Full Text] [Related]  

  • 111. FOS mapping reveals two complementary circuits for spatial navigation in mouse.
    Balcerek E; Włodkowska U; Czajkowski R
    Sci Rep; 2024 Sep; 14(1):21252. PubMed ID: 39261637
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Behavioral Analysis of NMDAR Function in Rodents: Tests of Long-Term Spatial Memory.
    Bannerman DM; Barkus C; Eltokhi A
    Methods Mol Biol; 2024; 2799():107-138. PubMed ID: 38727905
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Generation of Rare Human NMDA Receptor Variants in Mice.
    Sprengel R; Eltokhi A; Single FN
    Methods Mol Biol; 2024; 2799():79-105. PubMed ID: 38727904
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Dentate gyrus is needed for memory retrieval.
    Carretero-Guillén A; Treviño M; Gómez-Climent MÁ; Dogbevia GK; Bertocchi I; Sprengel R; Larkum ME; Vlachos A; Gruart A; Delgado-García JM; Hasan MT
    Mol Psychiatry; 2024 Oct; 29(10):2939-2950. PubMed ID: 38609585
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Brain-enriched guanylate kinase-associated protein, a component of the post-synaptic density protein complexes, contributes to learning and memory.
    Katano T; Konno K; Takao K; Abe M; Yoshikawa A; Miyakawa T; Sakimura K; Watanabe M; Ito S; Kobayashi T
    Sci Rep; 2023 Dec; 13(1):22027. PubMed ID: 38086879
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Distinct effects of AMPAR subunit depletion on spatial memory.
    Eltokhi A; Bertocchi I; Rozov A; Jensen V; Borchardt T; Taylor A; Proenca CC; Rawlins JNP; Bannerman DM; Sprengel R
    iScience; 2023 Nov; 26(11):108116. PubMed ID: 37876813
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Inhaled molecular hydrogen reduces hippocampal neuroinflammation, glial reactivity and ameliorates memory impairment during systemic inflammation.
    de Deus JL; Amorim MR; da Silva Junior RMP; Jesus AA; de Barcellos Filho PCG; Cárnio EC; Cunha AOS; Leão RM; Branco LGS
    Brain Behav Immun Health; 2023 Aug; 31():100654. PubMed ID: 37449286
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Phosphorylation of PSD-95 at serine 73 in dCA1 is required for extinction of contextual fear.
    Ziółkowska M; Borczyk M; Cały A; Tomaszewski KF; Nowacka A; Nalberczak-Skóra M; Śliwińska MA; Łukasiewicz K; Skonieczna E; Wójtowicz T; Wlodarczyk J; Bernaś T; Salamian A; Radwanska K
    PLoS Biol; 2023 May; 21(5):e3002106. PubMed ID: 37155709
    [TBL] [Abstract][Full Text] [Related]  

  • 119. IL-37 expression reduces acute and chronic neuroinflammation and rescues cognitive impairment in an Alzheimer's disease mouse model.
    Lonnemann N; Hosseini S; Ohm M; Geffers R; Hiller K; Dinarello CA; Korte M
    Elife; 2022 Aug; 11():. PubMed ID: 36040311
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Abnormal sensory perception masks behavioral performance of Grin1 knockdown mice.
    Lipina T; Men X; Blundell M; Salahpour A; Ramsey AJ
    Genes Brain Behav; 2022 Jul; 21(6):e12825. PubMed ID: 35705513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.