These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22797764)

  • 1. Inability to catabolize galactose leads to increased ability to compete for nodule occupancy in Sinorhizobium meliloti.
    Geddes BA; Oresnik IJ
    J Bacteriol; 2012 Sep; 194(18):5044-53. PubMed ID: 22797764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exopolysaccharide production in response to medium acidification is correlated with an increase in competition for nodule occupancy.
    Geddes BA; González JE; Oresnik IJ
    Mol Plant Microbe Interact; 2014 Dec; 27(12):1307-17. PubMed ID: 25387133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism.
    Poysti NJ; Loewen EDM; Wang Z; Oresnik IJ
    Microbiology (Reading); 2007 Mar; 153(Pt 3):727-736. PubMed ID: 17322193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inability to Catabolize Rhamnose by
    Rivers DMR; Kim DD; Oresnik IJ
    Microorganisms; 2022 Mar; 10(4):. PubMed ID: 35456783
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterization of the Sinorhizobium meliloti HslUV and ClpXP Protease Systems in Free-Living and Symbiotic States.
    Ogden AJ; McAleer JM; Kahn ML
    J Bacteriol; 2019 Apr; 201(7):. PubMed ID: 30670545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa.
    Torres-Quesada O; Oruezabal RI; Peregrina A; Jofré E; Lloret J; Rivilla R; Toro N; Jiménez-Zurdo JI
    BMC Microbiol; 2010 Mar; 10():71. PubMed ID: 20205931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of trehalose biosynthesis for Sinorhizobium meliloti Osmotolerance and nodulation of Alfalfa roots.
    Domínguez-Ferreras A; Soto MJ; Pérez-Arnedo R; Olivares J; Sanjuán J
    J Bacteriol; 2009 Dec; 191(24):7490-9. PubMed ID: 19837796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of poly-3-hydroxybutyrate (PHB) and glycogen in symbiosis of Sinorhizobium meliloti with Medicago sp.
    Wang C; Saldanha M; Sheng X; Shelswell KJ; Walsh KT; Sobral BWS; Charles TC
    Microbiology (Reading); 2007 Feb; 153(Pt 2):388-398. PubMed ID: 17259610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Mutations That Affect the Nonoxidative Pentose Phosphate Pathway in Sinorhizobium meliloti.
    Hawkins JP; Ordonez PA; Oresnik IJ
    J Bacteriol; 2018 Jan; 200(2):. PubMed ID: 29084855
    [No Abstract]   [Full Text] [Related]  

  • 10. Contributions of Sinorhizobium meliloti Transcriptional Regulator DksA to Bacterial Growth and Efficient Symbiosis with Medicago sativa.
    Wippel K; Long SR
    J Bacteriol; 2016 May; 198(9):1374-83. PubMed ID: 26883825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Most
    Lang C; Barnett MJ; Fisher RF; Smith LS; Diodati ME; Long SR
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30305320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti.
    Maclean AM; White CE; Fowler JE; Finan TM
    Mol Plant Microbe Interact; 2009 Sep; 22(9):1116-27. PubMed ID: 19656046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxotrophy accounts for nodulation defect of most Sinorhizobium meliloti mutants in the branched-chain amino acid biosynthesis pathway.
    de las Nieves Peltzer M; Roques N; Poinsot V; Aguilar OM; Batut J; Capela D
    Mol Plant Microbe Interact; 2008 Sep; 21(9):1232-41. PubMed ID: 18700827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H2O2 is required for optimal establishment of the Medicago sativa/Sinorhizobium meliloti symbiosis.
    Jamet A; Mandon K; Puppo A; Hérouart D
    J Bacteriol; 2007 Dec; 189(23):8741-5. PubMed ID: 17921312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol catabolism, a key pathway in sinorhizobium meliloti for competitive host nodulation.
    Kohler PR; Zheng JY; Schoffers E; Rossbach S
    Appl Environ Microbiol; 2010 Dec; 76(24):7972-80. PubMed ID: 20971862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules.
    Queiroux C; Washburn BK; Davis OM; Stewart J; Brewer TE; Lyons MR; Jones KM
    BMC Microbiol; 2012 May; 12():74. PubMed ID: 22587634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome.
    Schneiker-Bekel S; Wibberg D; Bekel T; Blom J; Linke B; Neuweger H; Stiens M; Vorhölter FJ; Weidner S; Goesmann A; Pühler A; Schlüter A
    J Biotechnol; 2011 Aug; 155(1):20-33. PubMed ID: 21396969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sinorhizobium meliloti Functionally Replaces 3-Oxoacyl-Acyl Carrier Protein Reductase (FabG) by Overexpressing NodG During Fatty Acid Synthesis.
    Mao YH; Li F; Ma JC; Hu Z; Wang HH
    Mol Plant Microbe Interact; 2016 Jun; 29(6):458-67. PubMed ID: 26975437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of trehalose transport and utilization in Sinorhizobium meliloti--alfalfa interactions.
    Jensen JB; Ampomah OY; Darrah R; Peters NK; Bhuvaneswari TV
    Mol Plant Microbe Interact; 2005 Jul; 18(7):694-702. PubMed ID: 16042015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Proteomic Profile of the Bacterium Sinorhizobium meliloti Depends on Its Life Form and Host Plant Species].
    Antonets KS; Onishchuk OP; Kurchak ON; Volkov KV; Lykholay AN; Andreeva EA; Andronov EE; Pinaev AG; Provorov NA; Nizhnikov AA
    Mol Biol (Mosk); 2018; 52(5):898-904. PubMed ID: 30363063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.