These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22797784)

  • 1. A new paradigm for human stick balancing: a suspended not an inverted pendulum.
    Lee KY; O'Dwyer N; Halaki M; Smith R
    Exp Brain Res; 2012 Sep; 221(3):309-28. PubMed ID: 22797784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptual and motor learning underlies human stick-balancing skill.
    Lee KY; O'Dwyer N; Halaki M; Smith R
    J Neurophysiol; 2015 Jan; 113(1):156-71. PubMed ID: 25298388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human stick balancing: an intermittent control explanation.
    Gawthrop P; Lee KY; Halaki M; O'Dwyer N
    Biol Cybern; 2013 Dec; 107(6):637-52. PubMed ID: 23943300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The time-delayed inverted pendulum: implications for human balance control.
    Milton J; Cabrera JL; Ohira T; Tajima S; Tonosaki Y; Eurich CW; Campbell SA
    Chaos; 2009 Jun; 19(2):026110. PubMed ID: 19566270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements.
    Loram ID; Lakie M
    J Physiol; 2002 May; 540(Pt 3):1111-24. PubMed ID: 11986396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of quiet human stance: computer simulations of a triple inverted pendulum model.
    Günther M; Wagner H
    Comput Methods Biomech Biomed Engin; 2016; 19(8):819-34. PubMed ID: 26214594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermittent appearances of saddle-type hyperbolic dynamics during human stick balancing on a manually controlled cart.
    Yoshikawa N; Suzuki Y; Kiyono K; Nomura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3500-3. PubMed ID: 26737047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balancing with vibration: a prelude for "drift and act" balance control.
    Milton JG; Ohira T; Cabrera JL; Fraiser RM; Gyorffy JB; Ruiz FK; Strauss MA; Balch EC; Marin PJ; Alexander JL
    PLoS One; 2009 Oct; 4(10):e7427. PubMed ID: 19841741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning a stick-balancing task involves task-specific coupling between posture and hand displacements.
    Cluff T; Boulet J; Balasubramaniam R
    Exp Brain Res; 2011 Aug; 213(1):15-25. PubMed ID: 21706299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attentional influences on the performance of secondary physical tasks during posture control.
    Cluff T; Gharib T; Balasubramaniam R
    Exp Brain Res; 2010 Jun; 203(4):647-58. PubMed ID: 20454784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human stick balancing: tuning Lèvy flights to improve balance control.
    Cabrera JL; Milton JG
    Chaos; 2004 Sep; 14(3):691-8. PubMed ID: 15446980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of stick use on rapid unimanual tapping in drummers.
    Fujii S; Oda S
    Percept Mot Skills; 2009 Jun; 108(3):962-70. PubMed ID: 19725329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-well dynamics of noise-driven control activation in human intermittent control: the case of stick balancing.
    Zgonnikov A; Lubashevsky I
    Cogn Process; 2015 Nov; 16(4):351-8. PubMed ID: 25925132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human balancing of an inverted pendulum: is sway size controlled by ankle impedance?
    Loram ID; Kelly SM; Lakie M
    J Physiol; 2001 May; 532(Pt 3):879-91. PubMed ID: 11313453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermittent Feedback-Control Strategy for Stabilizing Inverted Pendulum on Manually Controlled Cart as Analogy to Human Stick Balancing.
    Yoshikawa N; Suzuki Y; Kiyono K; Nomura T
    Front Comput Neurosci; 2016; 10():34. PubMed ID: 27148031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface.
    Asai Y; Tateyama S; Nomura T
    PLoS One; 2013; 8(5):e62956. PubMed ID: 23717398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilizing unstable object by means of kinematic redundancy.
    Masia L; Squeri V; Saha D; Burdet E; Sandini G; Morasso P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3698-702. PubMed ID: 21096858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintaining rotational equilibrium during object manipulation: linear behavior of a highly non-linear system.
    Gao F; Latash ML; Zatsiorsky VM
    Exp Brain Res; 2006 Mar; 169(4):519-31. PubMed ID: 16328302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical torque allows recording of anticipatory postural adjustments associated with slow, arm-raising movements.
    Bleuse S; Cassim F; Blatt JL; Defebvre L; Derambure P; Guieu JD
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):693-9. PubMed ID: 15921833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Less precise motor control leads to increased agonist-antagonist muscle activation during stick balancing.
    Reeves NP; Popovich JM; Vijayanagar V; Pathak PK
    Hum Mov Sci; 2016 Jun; 47():166-174. PubMed ID: 27010497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.