BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 22798041)

  • 1. Preparation of poly(L-lactide) blends and biodegradation by Lentzea waywayandensis.
    Nair NR; Nampoothiri KM; Pandey A
    Biotechnol Lett; 2012 Nov; 34(11):2031-5. PubMed ID: 22798041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(L-lactide) degradation by Saccharothrix waywayandensis.
    Jarerat A; Tokiwa Y
    Biotechnol Lett; 2003 Mar; 25(5):401-4. PubMed ID: 12882561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions.
    Kalita NK; Bhasney SM; Mudenur C; Kalamdhad A; Katiyar V
    Chemosphere; 2020 May; 247():125875. PubMed ID: 32069712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.
    Arrieta MP; Fortunati E; Dominici F; López J; Kenny JM
    Carbohydr Polym; 2015 May; 121():265-75. PubMed ID: 25659698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Toughness Poly(Lactic Acid)/Starch Blends Prepared through Reactive Blending Plasticization and Compatibilization.
    Hu H; Xu A; Zhang D; Zhou W; Peng S; Zhao X
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33339088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(L-lactide) degradation by Kibdelosporangium aridum.
    Jarerat A; Tokiwa Y; Tanaka H
    Biotechnol Lett; 2003 Dec; 25(23):2035-8. PubMed ID: 14719819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(lactic acid) blends in biomedical applications.
    Saini P; Arora M; Kumar MNVR
    Adv Drug Deliv Rev; 2016 Dec; 107():47-59. PubMed ID: 27374458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid--characterization and biodegradability assessment.
    Wu CS
    Macromol Biosci; 2005 Apr; 5(4):352-61. PubMed ID: 15844129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and evaluation of biodegradable films containing the potent osteogenic compound BFB0261 for localized delivery.
    Umeki N; Sato T; Harada M; Takeda J; Saito S; Iwao Y; Itai S
    Int J Pharm; 2011 Feb; 404(1-2):10-8. PubMed ID: 21047548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay.
    B A; Suin S; Khatua BB
    Carbohydr Polym; 2014 Sep; 110():430-9. PubMed ID: 24906776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing biodegradation of PLA and PLA-g-AA/starch films using a phosphate-solubilizing bacillus species.
    Wu CS
    Macromol Biosci; 2008 Jun; 8(6):560-7. PubMed ID: 18322910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The properties of poly(lactic acid)/starch blends with a functionalized plant oil: tung oil anhydride.
    Xiong Z; Li C; Ma S; Feng J; Yang Y; Zhang R; Zhu J
    Carbohydr Polym; 2013 Jun; 95(1):77-84. PubMed ID: 23618242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly (lactic acid)/modified gum arabic (MG)based microcellular composite foam: Effect of MG on foam properties, thermal and crystallization behavior.
    Borkotoky SS; Ghosh T; Bhagabati P; Katiyar V
    Int J Biol Macromol; 2019 Mar; 125():159-170. PubMed ID: 30502435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends.
    Ferri JM; Garcia-Garcia D; Sánchez-Nacher L; Fenollar O; Balart R
    Carbohydr Polym; 2016 Aug; 147():60-68. PubMed ID: 27178909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal and rheological properties of L-polylactide/polyethylene glycol/silicate nanocomposites films.
    Ahmed J; Varshney SK; Auras R; Hwang SW
    J Food Sci; 2010 Oct; 75(8):N97-108. PubMed ID: 21535511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipase-catalyzed biodegradation of poly(epsilon-caprolactone) blended with various polylactide-based polymers.
    Li S; Liu L; Garreau H; Vert M
    Biomacromolecules; 2003; 4(2):372-7. PubMed ID: 12625734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil burial-induced chemical and thermal changes in starch/poly (lactic acid) composites.
    Lv S; Zhang Y; Gu J; Tan H
    Int J Biol Macromol; 2018 Jul; 113():338-344. PubMed ID: 29481951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheological and thermal properties of polylactide/silicate nanocomposites films.
    Ahmed J; Varshney SK; Auras R
    J Food Sci; 2010 Mar; 75(2):N17-24. PubMed ID: 20492249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends.
    Akrami M; Ghasemi I; Azizi H; Karrabi M; Seyedabadi M
    Carbohydr Polym; 2016 Jun; 144():254-62. PubMed ID: 27083816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid)--thermodynamics of micellization and hydrolytic degradation.
    Loh XJ; Tan YX; Li Z; Teo LS; Goh SH; Li J
    Biomaterials; 2008 May; 29(14):2164-72. PubMed ID: 18276002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.