BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22798241)

  • 1. Cuttlefish bone scaffold for tissue engineering: a novel hydrothermal transformation, chemical-physical, and biological characterization.
    Battistella E; Mele S; Foltran I; Lesci IG; Roveri N; Sabatino P; Rimondini L
    J Appl Biomater Funct Mater; 2012 Sep; 10(2):99-106. PubMed ID: 22798241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones.
    Rocha JH; Lemos AF; Agathopoulos S; Kannan S; Valério P; Ferreira JM
    J Biomed Mater Res A; 2006 Apr; 77(1):160-8. PubMed ID: 16392140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies.
    Milovac D; Gamboa-Martínez TC; Ivankovic M; Gallego Ferrer G; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():264-72. PubMed ID: 25063118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study on tailoring the nanostructured surfaces of cuttlefish bone transformed hydroxyapatite porous ceramics and its effect on osteoblasts].
    Jing L; Yang C; Huan Z; Ke Q; Chang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Mar; 33(3):363-369. PubMed ID: 30129337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of highly porous hydroxyapatite from cuttlefish bone.
    Ivankovic H; Gallego Ferrer G; Tkalcec E; Orlic S; Ivankovic M
    J Mater Sci Mater Med; 2009 May; 20(5):1039-46. PubMed ID: 19132509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyapatite formation from cuttlefish bones: kinetics.
    Ivankovic H; Tkalcec E; Orlic S; Ferrer GG; Schauperl Z
    J Mater Sci Mater Med; 2010 Oct; 21(10):2711-22. PubMed ID: 20567885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation pattern of porous CaCO3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering.
    Zhong Q; Li W; Su X; Li G; Zhou Y; Kundu SC; Yao J; Cai Y
    Colloids Surf B Biointerfaces; 2016 Jul; 143():56-63. PubMed ID: 26998866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenic differentiation of pre-osteoblasts on biomimetic tyrosine-derived polycarbonate scaffolds.
    Kim J; Magno MH; Alvarez P; Darr A; Kohn J; Hollinger JO
    Biomacromolecules; 2011 Oct; 12(10):3520-7. PubMed ID: 21834593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study.
    Çakmak S; Çakmak AS; Gümüşderelioğlu M
    Biomed Mater; 2013 Aug; 8(4):045014. PubMed ID: 23860136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering.
    Guo H; Su J; Wei J; Kong H; Liu C
    Acta Biomater; 2009 Jan; 5(1):268-78. PubMed ID: 18722167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.
    Wittenburg G; Flade V; Garbe AI; Lauer G; Labudde D
    Br J Oral Maxillofac Surg; 2014 May; 52(5):409-14. PubMed ID: 24685477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicate-substituted calcium phosphate with enhanced strut porosity stimulates osteogenic differentiation of human mesenchymal stem cells.
    De Godoy RF; Hutchens S; Campion C; Blunn G
    J Mater Sci Mater Med; 2015 Jan; 26(1):5387. PubMed ID: 25596863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proliferation and osteogenic differentiation of mesenchymal stromal cells in a novel porous hydroxyapatite scaffold.
    Krishnamurithy G; Murali MR; Hamdi M; Abbas AA; Raghavendran HB; Kamarul T
    Regen Med; 2015; 10(5):579-90. PubMed ID: 26237702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS; Park JH; Shin US; Kim HW
    Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics.
    Kasten P; Vogel J; Luginbühl R; Niemeyer P; Weiss S; Schneider S; Kramer M; Leo A; Richter W
    Cells Tissues Organs; 2006; 183(2):68-79. PubMed ID: 17053323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration.
    Liu Y; Huang Q; Feng Q
    Biomed Mater; 2013 Dec; 8(6):065001. PubMed ID: 24225162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel low temperature setting nanocrystalline calcium phosphate cements for bone repair: osteoblast cellular response and gene expression studies.
    Sethuraman S; Nair LS; El-Amin S; Nguyen MT; Greish YE; Bender JD; Brown PW; Allcock HR; Laurencin CT
    J Biomed Mater Res A; 2007 Sep; 82(4):884-91. PubMed ID: 17335035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of bioactive porous α-TCP/HAp beads for bone tissue engineering.
    Asaoka T; Ohtake S; Furukawa KS; Tamura A; Ushida T
    J Biomed Mater Res A; 2013 Nov; 101(11):3295-300. PubMed ID: 23983180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface functionalization of cuttlefish bone-derived biphasic calcium phosphate scaffolds with polymeric coatings.
    Neto AS; Fonseca AC; Abrantes JCC; Coelho JFJ; Ferreira JMF
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110014. PubMed ID: 31546414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.