These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Mannosylated polylactic-co-glycolic acid (MN-PLGA) nanoparticles induce potent anti-tumor immunity in murine model of breast cancer. Sheikhzadeh S; Delirezh N; Hobbenaghi R Biomed Pharmacother; 2021 Oct; 142():111962. PubMed ID: 34358752 [TBL] [Abstract][Full Text] [Related]
9. Polymer nanoparticles for enhanced immune response: combined delivery of tumor antigen and small interference RNA for immunosuppressive gene to dendritic cells. Heo MB; Cho MY; Lim YT Acta Biomater; 2014 May; 10(5):2169-76. PubMed ID: 24394635 [TBL] [Abstract][Full Text] [Related]
10. Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid. Keum CG; Noh YW; Baek JS; Lim JH; Hwang CJ; Na YG; Shin SC; Cho CW Int J Nanomedicine; 2011; 6():2225-34. PubMed ID: 22114486 [TBL] [Abstract][Full Text] [Related]
11. Anti-inflammatory loaded poly-lactic glycolic acid nanoparticle formulations to enhance myocardial gene transfer: an in-vitro assessment of a drug/gene combination therapeutic approach for direct injection. Fargnoli AS; Mu A; Katz MG; Williams RD; Margulies KB; Weiner DB; Yang S; Bridges CR J Transl Med; 2014 Jun; 12():171. PubMed ID: 24934216 [TBL] [Abstract][Full Text] [Related]
12. Stability of proteins encapsulated in injectable and biodegradable poly(lactide-co-glycolide)-glucose millicylinders. Kang J; Lambert O; Ausborn M; Schwendeman SP Int J Pharm; 2008 Jun; 357(1-2):235-43. PubMed ID: 18384984 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of DC-mediated anti-leukemic immunity in vitro by WT1 antigen and CpG co-encapsulated in PLGA microparticles. Zhang L; Zhao S; Duan J; Hu Y; Gu N; Xu H; Yang XD Protein Cell; 2013 Dec; 4(12):887-9. PubMed ID: 24258060 [No Abstract] [Full Text] [Related]
14. Effect of poly(ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure. Haggag YA; Faheem AM; Tambuwala MM; Osman MA; El-Gizawy SA; O'Hagan B; Irwin N; McCarron PA Pharm Dev Technol; 2018 Apr; 23(4):370-381. PubMed ID: 28285551 [TBL] [Abstract][Full Text] [Related]
15. pH-Responsive Poly(D,L-lactic-co-glycolic acid) Nanoparticles with Rapid Antigen Release Behavior Promote Immune Response. Liu Q; Chen X; Jia J; Zhang W; Yang T; Wang L; Ma G ACS Nano; 2015 May; 9(5):4925-38. PubMed ID: 25898266 [TBL] [Abstract][Full Text] [Related]
16. Encapsulation of alpha-1 antitrypsin in PLGA nanoparticles: in vitro characterization as an effective aerosol formulation in pulmonary diseases. Pirooznia N; Hasannia S; Lotfi AS; Ghanei M J Nanobiotechnology; 2012 May; 10():20. PubMed ID: 22607686 [TBL] [Abstract][Full Text] [Related]
17. Co-encapsulated CpG oligodeoxynucleotides and ovalbumin in PLGA microparticles; an in vitro and in vivo study. San Román B; Gómez S; Irache JM; Espuelas S J Pharm Pharm Sci; 2014; 17(4):541-53. PubMed ID: 25579433 [TBL] [Abstract][Full Text] [Related]
18. A therapeutic microparticle-based tumor lysate vaccine reduces spontaneous metastases in murine breast cancer. Gross BP; Wongrakpanich A; Francis MB; Salem AK; Norian LA AAPS J; 2014 Nov; 16(6):1194-203. PubMed ID: 25224145 [TBL] [Abstract][Full Text] [Related]
19. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. Cruz LJ; Rosalia RA; Kleinovink JW; Rueda F; Löwik CW; Ossendorp F J Control Release; 2014 Oct; 192():209-18. PubMed ID: 25068703 [TBL] [Abstract][Full Text] [Related]
20. Preparation of siRNA-encapsulated PLGA nanoparticles for sustained release of siRNA and evaluation of encapsulation efficiency. Pantazis P; Dimas K; Wyche JH; Anant S; Houchen CW; Panyam J; Ramanujam RP Methods Mol Biol; 2012; 906():311-9. PubMed ID: 22791444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]