BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22798486)

  • 1. Estimating population-level coancestry coefficients by an admixture F model.
    Karhunen M; Ovaskainen O
    Genetics; 2012 Oct; 192(2):609-17. PubMed ID: 22798486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogeography of ninespine sticklebacks (Pungitius pungitius) in North America: glacial refugia and the origins of adaptive traits.
    Aldenhoven JT; Miller MA; Corneli PS; Shapiro MD
    Mol Ecol; 2010 Sep; 19(18):4061-76. PubMed ID: 20854276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic diversity and population size: island populations of the common shrew, Sorex araneus.
    White TA; Searle JB
    Mol Ecol; 2007 May; 16(10):2005-16. PubMed ID: 17498228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome localization of microsatellite markers in the shrews of the Sorex araneus group.
    Basset P; Yannic G; Yang F; O'Brien PC; Graphodatsky AS; Ferguson-Smith MA; Balmus G; Volobouev VT; Hausser J
    Chromosome Res; 2006; 14(3):253-62. PubMed ID: 16628496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsatellites can be misleading: an empirical and simulation study.
    Balloux F; Brünner H; Lugon-Moulin N; Hausser J; Goudet J
    Evolution; 2000 Aug; 54(4):1414-22. PubMed ID: 11005307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bringing habitat information into statistical tests of local adaptation in quantitative traits: a case study of nine-spined sticklebacks.
    Karhunen M; Ovaskainen O; Herczeg G; Merilä J
    Evolution; 2014 Feb; 68(2):559-68. PubMed ID: 24117061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersal and population genetic structure of Telmatherina antoniae, an endemic freshwater Sailfin silverside from Sulawesi, Indonesia.
    Walter RP; Haffner GD; Heath DD
    J Evol Biol; 2009 Feb; 22(2):314-23. PubMed ID: 19032492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additional data for nuclear DNA give new insights into the phylogenetic position of Sorex granarius within the Sorex araneus group.
    Yannic G; Dubey S; Hausser J; Basset P
    Mol Phylogenet Evol; 2010 Dec; 57(3):1062-71. PubMed ID: 20883802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population divergence with or without admixture: selecting models using an ABC approach.
    Sousa VC; Beaumont MA; Fernandes P; Coelho MM; Chikhi L
    Heredity (Edinb); 2012 May; 108(5):521-30. PubMed ID: 22146980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and karyotypic structure in the shrews of the Sorex araneus group: are they independent?
    Basset P; Yannic G; Hausser J
    Mol Ecol; 2006 May; 15(6):1577-87. PubMed ID: 16629812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciation in ninespine stickleback: reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback.
    Ishikawa A; Takeuchi N; Kusakabe M; Kume M; Mori S; Takahashi H; Kitano J
    J Evol Biol; 2013 Jul; 26(7):1417-30. PubMed ID: 23663028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsatellite null alleles and estimation of population differentiation.
    Chapuis MP; Estoup A
    Mol Biol Evol; 2007 Mar; 24(3):621-31. PubMed ID: 17150975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The microsatellite polymorphism and gene flow in the contact zone of four common shrew (Sorex araneus L., Mammalia) chromosome races].
    Grigor'eva OO; Shestak AG; Potapov SG; Borisov IuM; Irkhin SIu; Korablev NP; Orlov VN
    Izv Akad Nauk Ser Biol; 2011; (5):501-10. PubMed ID: 22117416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomal rearrangements and genetic structure at different evolutionary levels of the Sorex araneus group.
    Basset P; Yannic G; Hausser J
    J Evol Biol; 2008 May; 21(3):842-52. PubMed ID: 18266682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (Pungitius pungitius).
    Shikano T; Ramadevi J; Shimada Y; Merilä J
    BMC Genomics; 2010 May; 11():334. PubMed ID: 20507571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High degree of genetic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus).
    Defaveri J; Shikano T; Shimada Y; Merilä J
    Mol Ecol; 2013 Sep; 22(18):4811-28. PubMed ID: 23947683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic architecture of parallel pelvic reduction in ninespine sticklebacks.
    Shikano T; Laine VN; Herczeg G; Vilkki J; Merilä J
    G3 (Bethesda); 2013 Oct; 3(10):1833-42. PubMed ID: 23979937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative genetics of body size and timing of maturation in two nine-spined stickleback (Pungitius pungitius) populations.
    Shimada Y; Shikano T; Kuparinen A; Gonda A; Leinonen T; Merilä J
    PLoS One; 2011; 6(12):e28859. PubMed ID: 22194929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genetic structure of an isolated population of the common shrew Sorex araneus L. (Mammalia) as determined from microsatellite variation.
    Grigoryeva OO; Oparin ML; Potapov SG; Orlov VN
    Dokl Biol Sci; 2012; 446():300-1. PubMed ID: 23129278
    [No Abstract]   [Full Text] [Related]  

  • 20. History vs. habitat type: explaining the genetic structure of European nine-spined stickleback (Pungitius pungitius) populations.
    Shikano T; Shimada Y; Herczeg G; Merilä J
    Mol Ecol; 2010 Mar; 19(6):1147-61. PubMed ID: 20163545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.