BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22798488)

  • 1. Genetic annotation of gain-of-function screens using RNA interference and in situ hybridization of candidate genes in the Drosophila wing.
    Molnar C; Casado M; López-Varea A; Cruz C; de Celis JF
    Genetics; 2012 Oct; 192(2):741-52. PubMed ID: 22798488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gain-of-function screen identifying genes required for growth and pattern formation of the Drosophila melanogaster wing.
    Cruz C; Glavic A; Casado M; de Celis JF
    Genetics; 2009 Nov; 183(3):1005-26. PubMed ID: 19737745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A targeted genetic modifier screen links the SWI2/SNF2 protein domino to growth and autophagy genes in Drosophila melanogaster.
    Kwon MH; Callaway H; Zhong J; Yedvobnick B
    G3 (Bethesda); 2013 May; 3(5):815-25. PubMed ID: 23550128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of 11-amino acid peptides that disrupt Notch-mediated processes in Drosophila.
    Pi H; Huang YC; Chen IC; Lin CD; Yeh HF; Pai LM
    J Biomed Sci; 2011 Jun; 18(1):42. PubMed ID: 21682860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gliolectin positively regulates Notch signalling during wing-vein specification in Drosophila.
    Prasad N; Shashidhara LS
    Int J Dev Biol; 2015; 59(4-6):187-94. PubMed ID: 26505251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted gain-of-function screening in Drosophila using GAL4-UAS and random transposon insertions.
    Zhong J; Yedvobnick B
    Genet Res (Camb); 2009 Aug; 91(4):243-58. PubMed ID: 19640320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gain-of-function screen identifying genes required for vein formation in the Drosophila melanogaster wing.
    Molnar C; López-Varea A; Hernández R; de Celis JF
    Genetics; 2006 Nov; 174(3):1635-59. PubMed ID: 16980395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide phenotypic RNAi screen in the Drosophila wing: global parameters.
    López-Varea A; Ostalé CM; Vega-Cuesta P; Ruiz-Gómez A; Organista MF; Martín M; Hevia CF; Molnar C; de Celis J; Culi J; Esteban N; de Celis JF
    G3 (Bethesda); 2021 Dec; 11(12):. PubMed ID: 34599819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic characterization of ebi reveals its critical role in Drosophila wing growth.
    Marygold SJ; Walker C; Orme M; Leevers S
    Fly (Austin); 2011; 5(4):291-303. PubMed ID: 22041576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Drosophila melanogaster Mutants apblot and apXasta Affect an Essential apterous Wing Enhancer.
    Bieli D; Kanca O; Gohl D; Denes A; Schedl P; Affolter M; Müller M
    G3 (Bethesda); 2015 Apr; 5(6):1129-43. PubMed ID: 25840432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of the protein kinase N gene of drosophila melanogaster results in the recessive delorean allele (pkndln) with a negative impact on wing morphogenesis.
    Sass GL; Ostrow BD
    G3 (Bethesda); 2014 Apr; 4(4):643-56. PubMed ID: 24531729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of
    Serafini G; Giordani G; Grillini L; Andrenacci D; Gargiulo G; Cavaliere V
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33019537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited Availability of General Co-Repressors Uncovered in an Overexpression Context during Wing Venation in
    Nagel AC; Maier D; Scharpf J; Ketelhut M; Preiss A
    Genes (Basel); 2020 Sep; 11(10):. PubMed ID: 32998295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Son of Notch, a winged-helix gene involved in boundary formation in the Drosophila wing.
    Park E; Suh H; Kim C; Park S; Dorsett D; Yim J
    IUBMB Life; 2007 Dec; 59(12):781-90. PubMed ID: 18085478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A gain-of-function suppressor screen for genes involved in dorsal-ventral boundary formation in the Drosophila wing.
    Bejarano F; Luque CM; Herranz H; Sorrosal G; Rafel N; Pham TT; Milán M
    Genetics; 2008 Jan; 178(1):307-23. PubMed ID: 18202376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled expression of Drosophila homeobox loci using the Hostile takeover system.
    Javeed N; Tardi NJ; Maher M; Singari S; Edwards KA
    Dev Dyn; 2015 Jun; 244(6):808-25. PubMed ID: 25820349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lines is required for normal operation of Wingless, Hedgehog and Notch pathways during wing development.
    Benítez E; Bray SJ; Rodriguez I; Guerrero I
    Development; 2009 Apr; 136(7):1211-21. PubMed ID: 19270177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Echinoid mutants exhibit neurogenic phenotypes and show synergistic interactions with the Notch signaling pathway.
    Ahmed A; Chandra S; Magarinos M; Vaessin H
    Development; 2003 Dec; 130(25):6295-304. PubMed ID: 14623819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylosylation of the Notch receptor preserves the balance between its activation by trans-Delta and inhibition by cis-ligands in Drosophila.
    Lee TV; Pandey A; Jafar-Nejad H
    PLoS Genet; 2017 Apr; 13(4):e1006723. PubMed ID: 28394891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new paramutation-like example at the Delta gene of Drosophila.
    Capovilla M; Robichon A; Rassoulzadegan M
    PLoS One; 2017; 12(3):e0172780. PubMed ID: 28355214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.