These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22798495)

  • 1. The co-regulation mechanism of transcription factors in the human gene regulatory network.
    Kim J; Choi M; Kim JR; Jin H; Kim VN; Cho KH
    Nucleic Acids Res; 2012 Oct; 40(18):8849-61. PubMed ID: 22798495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of regulatory network topology reveals functionally distinct classes of microRNAs.
    Yu X; Lin J; Zack DJ; Mendell JT; Qian J
    Nucleic Acids Res; 2008 Nov; 36(20):6494-503. PubMed ID: 18927108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DiNeR: a Differential graphical model for analysis of co-regulation Network Rewiring.
    Zhang J; Liu J; Lee D; Lou S; Chen Z; Gürsoy G; Gerstein M
    BMC Bioinformatics; 2020 Jul; 21(1):281. PubMed ID: 32615918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors.
    Österlund T; Bordel S; Nielsen J
    Integr Biol (Camb); 2015 May; 7(5):560-8. PubMed ID: 25855217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional regulatory network analysis during epithelial-mesenchymal transformation of retinal pigment epithelium.
    Pratt CH; Vadigepalli R; Chakravarthula P; Gonye GE; Philp NJ; Grunwald GB
    Mol Vis; 2008 Aug; 14():1414-28. PubMed ID: 18682805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions.
    Zhang J; Le TD; Liu L; He J; Li J
    Gene; 2016 Feb; 577(1):55-64. PubMed ID: 26611531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical model of a gene regulatory network reconciles effects of genetic perturbations on hematopoietic stem cell emergence.
    Narula J; Williams CJ; Tiwari A; Marks-Bluth J; Pimanda JE; Igoshin OA
    Dev Biol; 2013 Jul; 379(2):258-69. PubMed ID: 23623899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct and competitive regulatory patterns of tumor suppressor genes and oncogenes in ovarian cancer.
    Zhao M; Sun J; Zhao Z
    PLoS One; 2012; 7(8):e44175. PubMed ID: 22952919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the specificity of gene regulatory networks: How does network co-option affect subsequent evolution?
    McQueen E; Rebeiz M
    Curr Top Dev Biol; 2020; 139():375-405. PubMed ID: 32450967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory network structure as a dominant determinant of transcription factor evolutionary rate.
    Coulombe-Huntington J; Xia Y
    PLoS Comput Biol; 2012; 8(10):e1002734. PubMed ID: 23093926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription factor‑microRNA synergistic regulatory network revealing the mechanism of polycystic ovary syndrome.
    Liu HY; Huang YL; Liu JQ; Huang Q
    Mol Med Rep; 2016 May; 13(5):3920-8. PubMed ID: 27035648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring the transcriptional regulatory mechanism of signal-dependent gene expression via an integrative computational approach.
    Chiang S; Shinohara H; Huang JH; Tsai HK; Okada M
    FEBS Lett; 2020 May; 594(10):1477-1496. PubMed ID: 32052437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks.
    Albergante L; Blow JJ; Newman TJ
    Elife; 2014 Sep; 3():e02863. PubMed ID: 25182846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-Expression Network and Pathway Analyses Reveal Important Modules of miRNAs Regulating Milk Yield and Component Traits.
    Do DN; Dudemaine PL; Li R; Ibeagha-Awemu EM
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28718798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel motif-discovery algorithm to identify co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human.
    Liang C; Li Y; Luo J; Zhang Z
    Bioinformatics; 2015 Jul; 31(14):2348-55. PubMed ID: 25788622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling.
    Röttinger E; Dahlin P; Martindale MQ
    PLoS Genet; 2012; 8(12):e1003164. PubMed ID: 23300467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated network analysis reveals distinct regulatory roles of transcription factors and microRNAs.
    Guo Y; Alexander K; Clark AG; Grimson A; Yu H
    RNA; 2016 Nov; 22(11):1663-1672. PubMed ID: 27604961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants.
    Varala K; Marshall-Colón A; Cirrone J; Brooks MD; Pasquino AV; Léran S; Mittal S; Rock TM; Edwards MB; Kim GJ; Ruffel S; McCombie WR; Shasha D; Coruzzi GM
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6494-6499. PubMed ID: 29769331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergence of co-expression in gene regulatory networks.
    Yin W; Mendoza L; Monzon-Sandoval J; Urrutia AO; Gutierrez H
    PLoS One; 2021; 16(4):e0247671. PubMed ID: 33793561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA and transcription factor mediated regulatory network analysis reveals critical regulators and regulatory modules in myocardial infarction.
    Zhang G; Shi H; Wang L; Zhou M; Wang Z; Liu X; Cheng L; Li W; Li X
    PLoS One; 2015; 10(8):e0135339. PubMed ID: 26258537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.