These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2279856)

  • 1. An improved closed cranial window technique for investigation of blood-brain barrier function and cerebral vasomotor control in the rat.
    Kawamura S; Schürer L; Goetz A; Kempski O; Schmucker B; Baethmann A
    Int J Microcirc Clin Exp; 1990 Nov; 9(4):369-83. PubMed ID: 2279856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium nitroprusside (SNP) hypotension: intracranial pressure (ICP) and hemodynamics in pial arteriole in the rat.
    Lu GP; Kaul DK; Feldman SM; Orkin LR; Baez S
    Microcirc Endothelium Lymphatics; 1990; 6(4-5):315-41. PubMed ID: 2280744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of rat pial arterioles and venules to adenosine and carbon dioxide: with detailed description of the closed cranial window technique in rats.
    Morii S; Ngai AC; Winn HR
    J Cereb Blood Flow Metab; 1986 Feb; 6(1):34-41. PubMed ID: 3080442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of the blood-brain barrier function and vasomotor response in rat microcirculation using intravital fluorescence microscopy.
    Kawamura S; Yasui N
    Exp Neurol; 1992 Sep; 117(3):247-53. PubMed ID: 1397160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early white blood cell dynamics after traumatic brain injury: effects on the cerebral microcirculation.
    Härtl R; Medary MB; Ruge M; Arfors KE; Ghajar J
    J Cereb Blood Flow Metab; 1997 Nov; 17(11):1210-20. PubMed ID: 9390653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permeability and vasomotor response of cerebral vessels during exposure to arachidonic acid.
    Unterberg A; Wahl M; Hammersen F; Baethmann A
    Acta Neuropathol; 1987; 73(3):209-19. PubMed ID: 2441558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo effects of the Ca2+ entry blocker nilvadipine on brain surface microvessels in rats.
    Kawamura S; Yasui N
    Neurol Med Chir (Tokyo); 1994 Oct; 34(10):663-7. PubMed ID: 7529366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of endothelium and nitric oxide in rat pial arteriolar dilatory responses to CO2 in vivo.
    Wang Q; Pelligrino DA; Koenig HM; Albrecht RF
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):944-51. PubMed ID: 7929657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of increased intracranial pressure in brain surface microcirculation in rats.
    Kawamura S; Yasui N
    Acta Neurochir (Wien); 1994; 128(1-4):21-5. PubMed ID: 7847139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protection of the blood-brain barrier by hypercapnia during acute hypertension.
    Baumbach GL; Mayhan WG; Heistad DD
    Am J Physiol; 1986 Aug; 251(2 Pt 2):H282-7. PubMed ID: 3740284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intravital fluorescence microscopy for the study of blood-brain-barrier function.
    Wahl M; Unterberg A; Baethmann A
    Int J Microcirc Clin Exp; 1985; 4(1):3-18. PubMed ID: 2580809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of topical and intravenous JM-1232(-) on cerebral pial microvessels of rabbits.
    Ikemoto K; Ishiyama T; Shintani N; Asano N; Sessler DI; Matsukawa T
    BMC Anesthesiol; 2015; 15():37. PubMed ID: 25805961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of 30% and 60% xenon inhalation on pial vessel diameter and intracranial pressure in rabbits.
    Fukuda T; Nakayama H; Yanagi K; Mizutani T; Miyabe M; Ohshima N; Toyooka H
    Anesth Analg; 2001 May; 92(5):1245-50. PubMed ID: 11323354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of the blood-brain barrier in open and closed cranial window preparations in rats.
    Mayhan WG
    Stroke; 1991 Aug; 22(8):1059-63. PubMed ID: 1907772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of pial vessel diameter and regional cerebral blood flow to CO2 during midazolam administration in cats.
    Kumano H; Furuya H; Yomosa H; Nagahata T; Okuda T; Sakaki T
    Acta Anaesthesiol Scand; 1994 Oct; 38(7):729-33. PubMed ID: 7839786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term observation of pial microcirculatory parameters using an implanted cranial window method in the rat.
    Masuda H; Ushiyama A; Hirota S; Lawlor GF; Ohkubo C
    In Vivo; 2007; 21(3):471-9. PubMed ID: 17591356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of lipopolysaccharide on the permeability and reactivity of the cerebral microcirculation: role of inducible nitric oxide synthase.
    Mayhan WG
    Brain Res; 1998 May; 792(2):353-7. PubMed ID: 9593993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo rat closed spinal window for spinal microcirculation: observation of pial vessels, leukocyte adhesion, and red blood cell velocity.
    Ishikawa M; Sekizuka E; Sato S; Yamaguchi N; Shimizu K; Kobayashi K; Bertalanffy H; Kawase T
    Neurosurgery; 1999 Jan; 44(1):156-61; discussion 161-2. PubMed ID: 9894976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of veins and cerebral venous pressure in disruption of the blood-brain barrier.
    Mayhan WG; Heistad DD
    Circ Res; 1986 Aug; 59(2):216-20. PubMed ID: 3742745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.