These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22798701)

  • 1. Estimating Individual-Level Risk in Spatial Epidemiology Using Spatially Aggregated Information on the Population at Risk.
    Diggle PJ; Guan Y; Hart AC; Paize F; Stanton M
    J Am Stat Assoc; 2010; 105(492):1394-1402. PubMed ID: 22798701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disease risk estimation by combining case-control data with aggregated information on the population at risk.
    Chang X; Waagepetersen R; Yu H; Ma X; Holford TR; Wang R; Guan Y
    Biometrics; 2015 Mar; 71(1):114-121. PubMed ID: 25351292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Second-order analysis of inhomogeneous spatial point processes using case-control data.
    Diggle PJ; Gómez-Rubio V; Brown PE; Chetwynd AG; Gooding S
    Biometrics; 2007 Jun; 63(2):550-7. PubMed ID: 17688507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregated spatial intensity as a method for estimating point-level exposures within area-level units: The case of tobacco retailer exposure in census tracts.
    Brooks MM; Siegel SD; Corrigan AE; Curriero FC
    Spat Spatiotemporal Epidemiol; 2022 Jun; 41():100482. PubMed ID: 35691649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Border analysis for spatial clusters.
    Oliveira FLP; Cançado ALF; de Souza G; Moreira GJP; Kulldorff M
    Int J Health Geogr; 2018 Feb; 17(1):5. PubMed ID: 29454357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian semiparametric intensity estimation for inhomogeneous spatial point processes.
    Yue YR; Loh JM
    Biometrics; 2011 Sep; 67(3):937-46. PubMed ID: 21175553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geostatistical analysis of disease data: accounting for spatial support and population density in the isopleth mapping of cancer mortality risk using area-to-point Poisson kriging.
    Goovaerts P
    Int J Health Geogr; 2006 Nov; 5():52. PubMed ID: 17137504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An estimating function approach to inference for inhomogeneous Neyman-Scott processes.
    Waagepetersen RP
    Biometrics; 2007 Mar; 63(1):252-8. PubMed ID: 17447951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of the K-function in the analysis of spatial clustering for non-randomly distributed locations--exemplified by bovine virus diarrhoea virus (BVDV) infection in Denmark.
    Ersbøll AK; Ersbøll BK
    Prev Vet Med; 2009 Sep; 91(1):64-71. PubMed ID: 19540607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-likelihood for Spatial Point Processes.
    Guan Y; Jalilian A; Waagepetersen R
    J R Stat Soc Series B Stat Methodol; 2015 Jun; 77(3):677-697. PubMed ID: 26041970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data.
    Yelland LN; Salter AB; Ryan P
    Am J Epidemiol; 2011 Oct; 174(8):984-92. PubMed ID: 21841157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SIMULATION-BASED FRAMEWORK FOR ASSESSING THE FEASIBILITY OF RESPONDENT-DRIVEN SAMPLING FOR ESTIMATING CHARACTERISTICS IN POPULATIONS OF LESBIAN, GAY AND BISEXUAL OLDER ADULTS.
    Griffin M; Gile KJ; Fredricksen-Goldsen KI; Handcock MS; Erosheva EA
    Ann Appl Stat; 2018 Dec; 12(4):2252-2278. PubMed ID: 31632509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simulation study for geographic cluster detection analysis on population-based health survey data using spatial scan statistics.
    Moon J; Jung I
    Int J Health Geogr; 2022 Sep; 21(1):11. PubMed ID: 36085072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Almost efficient estimation of relative risk regression.
    Fitzmaurice GM; Lipsitz SR; Arriaga A; Sinha D; Greenberg C; Gawande AA
    Biostatistics; 2014 Oct; 15(4):745-56. PubMed ID: 24705141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesizing external aggregated information in the penalized Cox regression under population heterogeneity.
    Sheng Y; Sun Y; Huang CY; Kim MO
    Stat Med; 2021 Oct; 40(23):4915-4930. PubMed ID: 34134178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new estimation approach for combining epidemiological data from multiple sources.
    Huang H; Ma X; Waagepetersen R; Holford TR; Wang R; Risch H; Mueller L; Guan Y
    J Am Stat Assoc; 2014 Jan; 109(505):11-23. PubMed ID: 24683281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating animal abundance at multiple scales by spatially explicit capture-recapture.
    Howe EJ; Potter D; Beauclerc KB; Jackson KE; Northrup JM
    Ecol Appl; 2022 Oct; 32(7):e2638. PubMed ID: 35441452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of spatial aggregation on performance when mapping a risk of disease.
    Jeffery C; Ozonoff A; Pagano M
    Int J Health Geogr; 2014 Mar; 13():9. PubMed ID: 24625068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of spatial resolution on space-time disease cluster detection.
    Jones SG; Kulldorff M
    PLoS One; 2012; 7(10):e48036. PubMed ID: 23110167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially explicit approach to estimation of total population abundance in field surveys.
    Takashina N; Kusumoto B; Beger M; Rathnayake S; Possingham HP
    J Theor Biol; 2018 Sep; 453():88-95. PubMed ID: 29787747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.