These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22798730)

  • 1. BROMOC-D: Brownian Dynamics/Monte-Carlo Program Suite to Study Ion and DNA Permeation in Nanopores.
    De Biase PM; Solano CJ; Markosyan S; Czapla L; Noskov SY
    J Chem Theory Comput; 2012 Jul; 8(7):2540-2551. PubMed ID: 22798730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of confinement on DNA, solvent and counterion dynamics in a model biological nanopore.
    Markosyan S; De Biase PM; Czapla L; Samoylova O; Singh G; Cuervo J; Tieleman DP; Noskov SY
    Nanoscale; 2014 Aug; 6(15):9006-16. PubMed ID: 24968858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BROMOC suite: Monte Carlo/Brownian dynamics suite for studies of ion permeation and DNA transport in biological and artificial pores with effective potentials.
    De Biase PM; Markosyan S; Noskov S
    J Comput Chem; 2015 Feb; 36(4):264-71. PubMed ID: 25503688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsecond simulations of DNA and ion transport in nanopores with novel ion-ion and ion-nucleotides effective potentials.
    De Biase PM; Markosyan S; Noskov S
    J Comput Chem; 2014 Apr; 35(9):711-21. PubMed ID: 24738152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brownian Dynamics Approach Including Explicit Atoms for Studying Ion Permeation and Substrate Translocation across Nanopores.
    Solano CJF; Prajapati JD; Pothula KR; Kleinekathöfer U
    J Chem Theory Comput; 2018 Dec; 14(12):6701-6713. PubMed ID: 30407818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory.
    Noskov SY; Im W; Roux B
    Biophys J; 2004 Oct; 87(4):2299-309. PubMed ID: 15454431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion selectivity of alpha-hemolysin with beta-cyclodextrin adapter. II. Multi-ion effects studied with grand canonical Monte Carlo/Brownian dynamics simulations.
    Egwolf B; Luo Y; Walters DE; Roux B
    J Phys Chem B; 2010 Mar; 114(8):2901-9. PubMed ID: 20146515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What controls open-pore and residual currents in the first sensing zone of alpha-hemolysin nanopore? Combined experimental and theoretical study.
    De Biase PM; Ervin EN; Pal P; Samoylova O; Markosyan S; Keehan MG; Barrall GA; Noskov SY
    Nanoscale; 2016 Jun; 8(22):11571-9. PubMed ID: 27210516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels.
    Im W; Seefeld S; Roux B
    Biophys J; 2000 Aug; 79(2):788-801. PubMed ID: 10920012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BROMOCEA Code: An Improved Grand Canonical Monte Carlo/Brownian Dynamics Algorithm Including Explicit Atoms.
    Solano CJ; Pothula KR; Prajapati JD; De Biase PM; Noskov SY; Kleinekathöfer U
    J Chem Theory Comput; 2016 May; 12(5):2401-17. PubMed ID: 27088446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brownian dynamics simulations of ion transport through the VDAC.
    Lee KI; Rui H; Pastor RW; Im W
    Biophys J; 2011 Feb; 100(3):611-619. PubMed ID: 21281575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory.
    Im W; Roux B
    J Mol Biol; 2002 Sep; 322(4):851-69. PubMed ID: 12270719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Brownian Dynamics Simulator for the Study of Ion Permeation through Membrane Pores.
    Berti C; Furini S; Gillespie D; Boda D; Eisenberg RS; Sangiorgi E; Fiegna C
    J Chem Theory Comput; 2014 Aug; 10(8):2911-26. PubMed ID: 26588267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Web interface for Brownian dynamics simulation of ion transport and its applications to beta-barrel pores.
    Lee KI; Jo S; Rui H; Egwolf B; Roux B; Pastor RW; Im W
    J Comput Chem; 2012 Jan; 33(3):331-9. PubMed ID: 22102176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-file charge storage in conducting nanopores.
    Lee AA; Kondrat S; Kornyshev AA
    Phys Rev Lett; 2014 Jul; 113(4):048701. PubMed ID: 25105658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion Move Brownian Dynamics (IMBD)--simulations of ion transport.
    Kurczynska M; Kotulska M
    Acta Bioeng Biomech; 2014; 16(4):107-16. PubMed ID: 25597535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of the transpore velocity control of single-stranded DNA.
    Qian W; Doi K; Uehara S; Morita K; Kawano S
    Int J Mol Sci; 2014 Aug; 15(8):13817-32. PubMed ID: 25116683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusive dynamics of DNA unzipping in a nanopore.
    Stachiewicz A; Molski A
    J Comput Chem; 2016 Feb; 37(5):467-76. PubMed ID: 26519865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.