These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22798730)

  • 21. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-stranded DNA within nanopores: conformational dynamics and implications for sequencing; a molecular dynamics simulation study.
    Guy AT; Piggot TJ; Khalid S
    Biophys J; 2012 Sep; 103(5):1028-36. PubMed ID: 23009852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of different organic solvents on sodium ion storage in carbon nanopores.
    Karatrantos A; Khan S; Ohba T; Cai Q
    Phys Chem Chem Phys; 2018 Feb; 20(9):6307-6315. PubMed ID: 29435523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores.
    Wells DB; Bhattacharya S; Carr R; Maffeo C; Ho A; Comer J; Aksimentiev A
    Methods Mol Biol; 2012; 870():165-86. PubMed ID: 22528264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quasi one-dimensional nanopores in single-wall carbon nanohorn colloids using grand canonical Monte Carlo simulation aided adsorption technique.
    Ohba T; Kanoh H; Yudasaka M; Iijima S; Kaneko K
    J Phys Chem B; 2005 May; 109(18):8659-62. PubMed ID: 16852025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A coarse-grained MARTINI-like force field for DNA unzipping in nanopores.
    Stachiewicz A; Molski A
    J Comput Chem; 2015 May; 36(13):947-56. PubMed ID: 25706623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic lattice grand canonical Monte Carlo simulation for ion current calculations in a model ion channel system.
    Hwang H; Schatz GC; Ratner MA
    J Chem Phys; 2007 Jul; 127(2):024706. PubMed ID: 17640144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Nanopore Charge Decorations on the Translocation Dynamics of DNA.
    Jou I; Muthukumar M
    Biophys J; 2017 Oct; 113(8):1664-1672. PubMed ID: 29045861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electric-field-controlled water and ion permeation of a hydrophobic nanopore.
    Dzubiella J; Hansen JP
    J Chem Phys; 2005 Jun; 122(23):234706. PubMed ID: 16008472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating the applicability of the Fokker-Planck equation in polymer translocation: a Brownian dynamics study.
    Polson JM; Dunn TR
    J Chem Phys; 2014 May; 140(18):184904. PubMed ID: 24832303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in Salt Concentration Modify the Translocation of Neutral Molecules through a ΔCymA Nanopore in a Non-monotonic Manner.
    Prajapati JD; Pangeni S; Aksoyoglu MA; Winterhalter M; Kleinekathöfer U
    ACS Nano; 2022 May; 16(5):7701-7712. PubMed ID: 35435659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Monte Carlo algorithm to study polymer translocation through nanopores. I. Theory and numerical approach.
    Gauthier MG; Slater GW
    J Chem Phys; 2008 Feb; 128(6):065103. PubMed ID: 18282074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting Gas Separation through Graphene Nanopore Ensembles with Realistic Pore Size Distributions.
    Yuan Z; Govind Rajan A; He G; Misra RP; Strano MS; Blankschtein D
    ACS Nano; 2021 Jan; 15(1):1727-1740. PubMed ID: 33439000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combining dynamic Monte Carlo with machine learning to study nanoparticle translocation.
    Vieira LF; Weinhofer AC; Oltjen WC; Yu C; de Souza Mendes PR; Hore MJA
    Soft Matter; 2022 Jul; 18(28):5218-5229. PubMed ID: 35770621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.
    Kowalczyk P; Gauden PA; Terzyk AP; Bhatia SK
    Langmuir; 2007 Mar; 23(7):3666-72. PubMed ID: 17323981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of Ionic Hydration Free Energies with Grand Canonical Monte Carlo/Molecular Dynamics Simulations in Explicit Water.
    Sun D; Lakkaraju SK; Jo S; MacKerell AD
    J Chem Theory Comput; 2018 Oct; 14(10):5290-5302. PubMed ID: 30183291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular simulation of ion transport in silica nanopores.
    Shirono K; Tatsumi N; Daiguji H
    J Phys Chem B; 2009 Jan; 113(4):1041-7. PubMed ID: 19123824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Translocation of a polymer through a nanopore starting from a confining nanotube.
    Sean D; de Haan HW; Slater GW
    Electrophoresis; 2015 Mar; 36(5):682-91. PubMed ID: 25461428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Density-functional theory and Monte Carlo simulation study on the electric double layer around DNA in mixed-size counterion systems.
    Wang K; Yu YX; Gao GH; Luo GS
    J Chem Phys; 2005 Dec; 123(23):234904. PubMed ID: 16392946
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation study on the translocation of a partially charged polymer through a nanopore.
    Qian H; Sun LZ; Luo MB
    J Chem Phys; 2012 Jul; 137(3):034903. PubMed ID: 22830729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.