These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22799273)

  • 1. Molecular investigation of the mechanical properties of single actin filaments based on vibration analyses.
    Li T; Gu YT; Oloyede A; Yarlagadda PK
    Comput Methods Biomech Biomed Engin; 2014; 17(6):616-22. PubMed ID: 22799273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cofilin reduces the mechanical properties of actin filaments: approach with coarse-grained methods.
    Kim JI; Kwon J; Baek I; Park HS; Na S
    Phys Chem Chem Phys; 2015 Mar; 17(12):8148-58. PubMed ID: 25727245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomechanics of actin filament: A molecular dynamics simulation.
    Shamloo A; Mehrafrooz B
    Cytoskeleton (Hoboken); 2018 Mar; 75(3):118-130. PubMed ID: 29272080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steered molecular dynamics analysis of the role of cofilin in increasing the flexibility of actin filaments.
    Kim JI; Kwon J; Baek I; Na S
    Biophys Chem; 2016 Nov; 218():27-35. PubMed ID: 27589672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of extension-torsion coupling of actin filaments.
    Matsushita S; Inoue Y; Adachi T
    Biochem Biophys Res Commun; 2012 Apr; 420(4):710-3. PubMed ID: 22366037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free vibration analysis of microtubules based on the molecular mechanics and continuum beam theory.
    Zhang J; Wang C
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1069-78. PubMed ID: 26564172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarse-graining provides insights on the essential nature of heterogeneity in actin filaments.
    Fan J; Saunders MG; Voth GA
    Biophys J; 2012 Sep; 103(6):1334-42. PubMed ID: 22995506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale modeling of cellular actin filaments: from atomistic molecular to coarse-grained dynamics.
    Deriu MA; Shkurti A; Paciello G; Bidone TC; Morbiducci U; Ficarra E; Audenino A; Acquaviva A
    Proteins; 2012 Jun; 80(6):1598-609. PubMed ID: 22411308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A prestressed cable network model of the adherent cell cytoskeleton.
    Coughlin MF; Stamenović D
    Biophys J; 2003 Feb; 84(2 Pt 1):1328-36. PubMed ID: 12547813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological transitions of elastic filaments in shear flow.
    Liu Y; Chakrabarti B; Saintillan D; Lindner A; du Roure O
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9438-9443. PubMed ID: 30181295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous fluctuations of active polar filaments.
    Liverpool TB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031909. PubMed ID: 12689103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rods-on-string idealization captures semiflexible filament dynamics.
    Chandran PL; Mofrad MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011906. PubMed ID: 19257068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin Filament Mechanics and Structure in Crowded Environments.
    Castaneda N; Lee M; Rivera-Jacquez HJ; Marracino RR; Merlino TR; Kang H
    J Phys Chem B; 2019 Apr; 123(13):2770-2779. PubMed ID: 30817154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic investigation of the effect of graphene oxide on mechanical properties of cell and actin cytoskeleton networks: experimental and theoretical approaches.
    Ghorbani M; Soleymani H; Hashemzadeh H; Mortezazadeh S; Sedghi M; Shojaeilangari S; Allahverdi A; Naderi-Manesh H
    Sci Rep; 2021 Aug; 11(1):16216. PubMed ID: 34376720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical characterization of cofilin-induced extension-torsion coupling in actin filaments.
    Kim JI; Kwon J; Baek I; Na S
    J Biomech; 2016 Jun; 49(9):1831-1835. PubMed ID: 27143106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP hydrolysis stimulates large length fluctuations in single actin filaments.
    Stukalin EB; Kolomeisky AB
    Biophys J; 2006 Apr; 90(8):2673-85. PubMed ID: 16443647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous oscillations of elastic filaments induced by molecular motors.
    De Canio G; Lauga E; Goldstein RE
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29167371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of F-actin filaments of several microns.
    Ming D; Kong Y; Wu Y; Ma J
    Biophys J; 2003 Jul; 85(1):27-35. PubMed ID: 12829461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits.
    Hocky GM; Baker JL; Bradley MJ; Sinitskiy AV; De La Cruz EM; Voth GA
    J Phys Chem B; 2016 May; 120(20):4558-67. PubMed ID: 27146246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive force generation by a bundle of living biofilaments.
    Ramachandran S; Ryckaert JP
    J Chem Phys; 2013 Aug; 139(6):064902. PubMed ID: 23947885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.