BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22799621)

  • 1. Electroosmotic flow control in microfluidic chips using a self-assembled monolayer as the insulator of a flow field-effect transistor.
    Chen LC; Wu CC; Wu RG; Chang HC
    Langmuir; 2012 Aug; 28(31):11281-5. PubMed ID: 22799621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetic flow control in microfluidic chips using a field-effect transistor.
    Horiuchi K; Dutta P
    Lab Chip; 2006 Jun; 6(6):714-23. PubMed ID: 16738721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of electroosmotic flow in capillary and microchip electrophoresis.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Nov; 1170(1-2):1-8. PubMed ID: 17915240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant-induced electroosmotic flow in microfluidic capillaries.
    Azadi G; Tripathi A
    Electrophoresis; 2012 Jul; 33(14):2094-101. PubMed ID: 22821484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field-effect flow control in a polydimethylsiloxane-based microfluidic system.
    Buch JS; Wang PC; DeVoe DL; Lee CS
    Electrophoresis; 2001 Oct; 22(18):3902-7. PubMed ID: 11700719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling electroosmotic flow in poly(dimethylsiloxane) separation channels by means of prepolymer additives.
    Luo Y; Huang B; Wu H; Zare RN
    Anal Chem; 2006 Jul; 78(13):4588-92. PubMed ID: 16808469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields.
    van der Wouden EJ; Hermes DC; Gardeniers JG; van den Berg A
    Lab Chip; 2006 Oct; 6(10):1300-5. PubMed ID: 17102843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microinjection in a microfluidic format using flexible and compliant channels and electroosmotic dosage control.
    Noori A; Selvaganapathy PR; Wilson J
    Lab Chip; 2009 Nov; 9(22):3202-11. PubMed ID: 19865726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of poly(dimethylsiloxane) microfluidic channels with silica nanoparticles based on layer-by-layer assembly technique.
    Wang W; Zhao L; Zhang JR; Wang XM; Zhu JJ; Chen HY
    J Chromatogr A; 2006 Dec; 1136(1):111-7. PubMed ID: 17078959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate analysis on hybrid poly(dimethylsiloxane)/glass chips dynamically coated with ionic complementary peptide.
    Li N; Hai X; Yu X; Dang F
    J Chromatogr A; 2017 Jan; 1481():152-157. PubMed ID: 28017563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A novel method for the direct measurement of electroosmotic flow velocity on microfluidic chips].
    Sun Y; Shen Z; Zeng C
    Se Pu; 2007 Sep; 25(5):690-3. PubMed ID: 18161319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips.
    Yu L; Huang H; Dong X; Wu D; Qin J; Lin B
    Electrophoresis; 2008 Dec; 29(24):5055-60. PubMed ID: 19130590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoelectric focusing in a poly(dimethylsiloxane) microfluidic chip.
    Cui H; Horiuchi K; Dutta P; Ivory CF
    Anal Chem; 2005 Mar; 77(5):1303-9. PubMed ID: 15732911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids.
    Liang RP; Meng XY; Liu CM; Qiu JD
    Electrophoresis; 2011 Nov; 32(23):3331-40. PubMed ID: 22134977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
    Chang ST; Beaumont E; Petsev DN; Velev OD
    Lab Chip; 2008 Jan; 8(1):117-24. PubMed ID: 18094769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the electroosmotic flow as a means to propel the mobile phase in capillary electrochromatography in view of further miniaturization of capillary electrochromatography systems.
    Szekely L; Freitag R
    Electrophoresis; 2005 May; 26(10):1928-39. PubMed ID: 15832304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of electroosmotic flow through nanoporous self-assembled arrays.
    Bell K; Gomes M; Nazemifard N
    Electrophoresis; 2015 Aug; 36(15):1738-43. PubMed ID: 25964193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of velocity profile obtained in microfluidic channel bearing a fluidic transistor: toward highly resolved electrophoretic separation.
    Charhrouchni I; Pallandre A; Le Potier I; Deslouis C; Haghiri-Gosnet AM
    Electrophoresis; 2013 Mar; 34(5):725-35. PubMed ID: 23254905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile method for electroosmotic flow measurements in microchip electrophoresis.
    Shakalisava Y; Poitevin M; Viovy JL; Descroix S
    J Chromatogr A; 2009 Feb; 1216(6):1030-3. PubMed ID: 19118836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.