BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 22799889)

  • 21. Chemical Biology Framework to Illuminate Proteostasis.
    Sebastian RM; Shoulders MD
    Annu Rev Biochem; 2020 Jun; 89():529-555. PubMed ID: 32097570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-content image-based screening for small-molecule chaperone amplifiers in heat shock.
    Au Q; Kanchanastit P; Barber JR; Ng SC; Zhang B
    J Biomol Screen; 2008 Dec; 13(10):953-9. PubMed ID: 19015292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorodeoxyuridine enhances the heat shock response and decreases polyglutamine aggregation in an HSF-1-dependent manner in Caenorhabditis elegans.
    Brunquell J; Bowers P; Westerheide SD
    Mech Ageing Dev; 2014; 141-142():1-4. PubMed ID: 25168631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HSF1 and HSF3 cooperatively regulate the heat shock response in lizards.
    Takii R; Fujimoto M; Matsuura Y; Wu F; Oshibe N; Takaki E; Katiyar A; Akashi H; Makino T; Kawata M; Nakai A
    PLoS One; 2017; 12(7):e0180776. PubMed ID: 28686674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-specific protein modifications by a phytochemical induce heat shock response for self-defense.
    Ohnishi K; Ohkura S; Nakahata E; Ishisaka A; Kawai Y; Terao J; Mori T; Ishii T; Nakayama T; Kioka N; Matsumoto S; Ikeda Y; Akiyama M; Irie K; Murakami A
    PLoS One; 2013; 8(3):e58641. PubMed ID: 23536805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. hsf1 (+) extends chronological lifespan through Ecl1 family genes in fission yeast.
    Ohtsuka H; Azuma K; Murakami H; Aiba H
    Mol Genet Genomics; 2011 Jan; 285(1):67-77. PubMed ID: 21072667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.
    Fragkostefanakis S; Röth S; Schleiff E; Scharf KD
    Plant Cell Environ; 2015 Sep; 38(9):1881-95. PubMed ID: 24995670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone?
    Powers MV; Jones K; Barillari C; Westwood I; van Montfort RL; Workman P
    Cell Cycle; 2010 Apr; 9(8):1542-50. PubMed ID: 20372081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of the maladaptive stress response to manage diseases of protein folding.
    Roth DM; Hutt DM; Tong J; Bouchecareilh M; Wang N; Seeley T; Dekkers JF; Beekman JM; Garza D; Drew L; Masliah E; Morimoto RI; Balch WE
    PLoS Biol; 2014 Nov; 12(11):e1001998. PubMed ID: 25406061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sir2 links the unfolded protein response and the heat shock response in a stress response network.
    Weindling E; Bar-Nun S
    Biochem Biophys Res Commun; 2015 Feb; 457(3):473-8. PubMed ID: 25600811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response.
    Kakkar V; Meister-Broekema M; Minoia M; Carra S; Kampinga HH
    Dis Model Mech; 2014 Apr; 7(4):421-34. PubMed ID: 24719117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential targets for HSF1 within the preinitiation complex.
    Yuan CX; Gurley WB
    Cell Stress Chaperones; 2000 Jul; 5(3):229-42. PubMed ID: 11005381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors.
    Fu S; Rogowsky P; Nover L; Scanlon MJ
    Planta; 2006 Jun; 224(1):42-52. PubMed ID: 16331466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monitoring of the Heat Shock Response with a Real-Time Luciferase Reporter.
    Kijima T; Eguchi T; Neckers L; Prince TL
    Methods Mol Biol; 2018; 1709():35-45. PubMed ID: 29177649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis.
    Chou SD; Prince T; Gong J; Calderwood SK
    PLoS One; 2012; 7(6):e39679. PubMed ID: 22768106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective killing of cancer cells by small molecules targeting heat shock stress response.
    Zhang D; Zhang B
    Biochem Biophys Res Commun; 2016 Sep; 478(4):1509-14. PubMed ID: 27553278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the mammalian heat-shock response. Inducible gene expression and heat-shock factor activity.
    Mathew A; Shi Y; Jolly C; Morimoto RI
    Methods Mol Biol; 2000; 99():217-55. PubMed ID: 10909088
    [No Abstract]   [Full Text] [Related]  

  • 40. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance.
    Ikeda M; Mitsuda N; Ohme-Takagi M
    Plant Physiol; 2011 Nov; 157(3):1243-54. PubMed ID: 21908690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.