BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 22799889)

  • 41. Protein homeostasis as a therapeutic target for diseases of protein conformation.
    Calamini B; Morimoto RI
    Curr Top Med Chem; 2012; 12(22):2623-40. PubMed ID: 23339312
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cloning and sequencing of heat shock factor (HSF1) cDNA from human retina.
    Pardhasaradhi K; Kutty RK; Park CS; Krishna G
    Curr Eye Res; 1994 Oct; 13(10):739-42. PubMed ID: 7842723
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The heat shock transcription factor Hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of senescence phenotype.
    Kim G; Meriin AB; Gabai VL; Christians E; Benjamin I; Wilson A; Wolozin B; Sherman MY
    Aging Cell; 2012 Aug; 11(4):617-27. PubMed ID: 22510478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis.
    Solís EJ; Pandey JP; Zheng X; Jin DX; Gupta PB; Airoldi EM; Pincus D; Denic V
    Mol Cell; 2016 Jul; 63(1):60-71. PubMed ID: 27320198
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Shock about heat shock in cancer.
    de Billy E; Travers J; Workman P
    Oncotarget; 2012 Aug; 3(8):741-3. PubMed ID: 22964629
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heat shock response modulators as therapeutic tools for diseases of protein conformation.
    Westerheide SD; Morimoto RI
    J Biol Chem; 2005 Sep; 280(39):33097-100. PubMed ID: 16076838
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An atypical unfolded protein response in heat shocked cells.
    Heldens L; Hensen SM; Onnekink C; van Genesen ST; Dirks RP; Lubsen NH
    PLoS One; 2011; 6(8):e23512. PubMed ID: 21853144
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation.
    Trinklein ND; Chen WC; Kingston RE; Myers RM
    Cell Stress Chaperones; 2004 Mar; 9(1):21-8. PubMed ID: 15270074
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcriptional activation of mouse cytosolic chaperonin CCT subunit genes by heat shock factors HSF1 and HSF2.
    Kubota H; Matsumoto S; Yokota S; Yanagi H; Yura T
    FEBS Lett; 1999 Nov; 461(1-2):125-9. PubMed ID: 10561509
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing.
    Tanabe M; Sasai N; Nagata K; Liu XD; Liu PC; Thiele DJ; Nakai A
    J Biol Chem; 1999 Sep; 274(39):27845-56. PubMed ID: 10488131
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The unpredictability of prolonged activation of stress response pathways.
    Lamech LT; Haynes CM
    J Cell Biol; 2015 Jun; 209(6):781-7. PubMed ID: 26101215
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chaperone regulation of the heat shock protein response.
    Voellmy R; Boellmann F
    Adv Exp Med Biol; 2007; 594():89-99. PubMed ID: 17205678
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state.
    Liu Y; Zhang C; Chen J; Guo L; Li X; Li W; Yu Z; Deng J; Zhang P; Zhang K; Zhang L
    Plant Physiol Biochem; 2013 Mar; 64():92-8. PubMed ID: 23399534
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heat shock factor HsfB1 primes gene transcription and systemic acquired resistance in Arabidopsis.
    Pick T; Jaskiewicz M; Peterhänsel C; Conrath U
    Plant Physiol; 2012 May; 159(1):52-5. PubMed ID: 22427343
    [No Abstract]   [Full Text] [Related]  

  • 56. Regulation of Hsf1 and the Heat Shock Response.
    Pincus D
    Adv Exp Med Biol; 2020; 1243():41-50. PubMed ID: 32297210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arabidopsis heat shock factor is constitutively active in Drosophila and human cells.
    Hübel A; Lee JH; Wu C; Schöffl F
    Mol Gen Genet; 1995 Jul; 248(2):136-41. PubMed ID: 7651336
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A molecular pathogenesis for transcription factor associated poly-alanine tract expansions.
    Albrecht AN; Kornak U; Böddrich A; Süring K; Robinson PN; Stiege AC; Lurz R; Stricker S; Wanker EE; Mundlos S
    Hum Mol Genet; 2004 Oct; 13(20):2351-9. PubMed ID: 15333588
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular cloning and characterization of genes encoding Pennisetum glaucum ascorbate peroxidase and heat-shock factor: interlinking oxidative and heat-stress responses.
    Reddy RA; Kumar B; Reddy PS; Mishra RN; Mahanty S; Kaul T; Nair S; Sopory SK; Reddy MK
    J Plant Physiol; 2009 Oct; 166(15):1646-59. PubMed ID: 19450902
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy.
    Pack CG; Ahn SG
    Biochem Biophys Res Commun; 2015 Jul; 463(3):303-8. PubMed ID: 26003728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.