These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 22799889)

  • 61. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae.
    Trotter EW; Kao CM; Berenfeld L; Botstein D; Petsko GA; Gray JV
    J Biol Chem; 2002 Nov; 277(47):44817-25. PubMed ID: 12239211
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identification of a tissue-selective heat shock response regulatory network.
    Guisbert E; Czyz DM; Richter K; McMullen PD; Morimoto RI
    PLoS Genet; 2013 Apr; 9(4):e1003466. PubMed ID: 23637632
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress.
    Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH
    Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Protein Misfolding Diseases and Therapeutic Approaches.
    Yadav K; Yadav A; Vashistha P; Pandey VP; Dwivedi UN
    Curr Protein Pept Sci; 2019; 20(12):1226-1245. PubMed ID: 31187709
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans.
    Krivoruchko A; Storey KB
    J Comp Physiol B; 2010 Mar; 180(3):403-14. PubMed ID: 19834715
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation.
    Kline MP; Morimoto RI
    Mol Cell Biol; 1997 Apr; 17(4):2107-15. PubMed ID: 9121459
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1.
    Westerheide SD; Anckar J; Stevens SM; Sistonen L; Morimoto RI
    Science; 2009 Feb; 323(5917):1063-6. PubMed ID: 19229036
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The response to heat shock and oxidative stress in Saccharomyces cerevisiae.
    Morano KA; Grant CM; Moye-Rowley WS
    Genetics; 2012 Apr; 190(4):1157-95. PubMed ID: 22209905
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Standardized Methods for Measuring Induction of the Heat Shock Response in Caenorhabditis elegans.
    Golden NL; Plagens RN; Kim Guisbert KS; Guisbert E
    J Vis Exp; 2020 Jul; (161):. PubMed ID: 32716378
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription.
    Sistonen L; Sarge KD; Morimoto RI
    Mol Cell Biol; 1994 Mar; 14(3):2087-99. PubMed ID: 8114740
    [TBL] [Abstract][Full Text] [Related]  

  • 71. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator.
    Nakai A; Tanabe M; Kawazoe Y; Inazawa J; Morimoto RI; Nagata K
    Mol Cell Biol; 1997 Jan; 17(1):469-81. PubMed ID: 8972228
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Rethinking HSF1 in Stress, Development, and Organismal Health.
    Li J; Labbadia J; Morimoto RI
    Trends Cell Biol; 2017 Dec; 27(12):895-905. PubMed ID: 28890254
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Anti-malaria drug blocks proteotoxic stress response: anti-cancer implications.
    Neznanov N; Gorbachev AV; Neznanova L; Komarov AP; Gurova KV; Gasparian AV; Banerjee AK; Almasan A; Fairchild RL; Gudkov AV
    Cell Cycle; 2009 Dec; 8(23):3960-70. PubMed ID: 19901558
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Pharmacological modulation of heat shock factor 1 by antiinflammatory drugs results in protection against stress-induced cellular damage.
    Lee BS; Chen J; Angelidis C; Jurivich DA; Morimoto RI
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7207-11. PubMed ID: 7638169
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Neuronal circuitry regulates the response of Caenorhabditis elegans to misfolded proteins.
    Prahlad V; Morimoto RI
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14204-9. PubMed ID: 21844355
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli.
    Sandqvist A; Björk JK; Akerfelt M; Chitikova Z; Grichine A; Vourc'h C; Jolly C; Salminen TA; Nymalm Y; Sistonen L
    Mol Biol Cell; 2009 Mar; 20(5):1340-7. PubMed ID: 19129477
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regulatory effect of heat shock transcription factor-1 gene on heat shock proteins and its transcriptional regulation analysis in small abalone Haliotis diversicolor.
    Zhang X; Li Y; Sun Y; Guo M; Feng J; Wang Y; Zhang Z
    BMC Mol Cell Biol; 2020 Nov; 21(1):83. PubMed ID: 33228519
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Malin and laforin are essential components of a protein complex that protects cells from thermal stress.
    Sengupta S; Badhwar I; Upadhyay M; Singh S; Ganesh S
    J Cell Sci; 2011 Jul; 124(Pt 13):2277-86. PubMed ID: 21652633
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterisation of hookworm heat shock factor binding protein (HSB-1) during heat shock and larval activation.
    Krepp J; Gelmedin V; Hawdon JM
    Int J Parasitol; 2011 Apr; 41(5):533-43. PubMed ID: 21172351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.