These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22800474)

  • 1. Eight boreal wetlands as sources and sinks for methyl mercury in relation to soil acidity, C/N ratio, and small-scale flooding.
    Tjerngren I; Meili M; Björn E; Skyllberg U
    Environ Sci Technol; 2012 Aug; 46(15):8052-60. PubMed ID: 22800474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Net degradation of methyl mercury in alder swamps.
    Kronberg RM; Tjerngren I; Drott A; Björn E; Skyllberg U
    Environ Sci Technol; 2012 Dec; 46(24):13144-51. PubMed ID: 23163228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylmercury production in and export from agricultural wetlands in California, USA: the need to account for physical transport processes into and out of the root zone.
    Bachand PA; Bachand SM; Fleck JA; Alpers CN; Stephenson M; Windham-Myers L
    Sci Total Environ; 2014 Feb; 472():957-70. PubMed ID: 24345859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region.
    Hall BD; Aiken GR; Krabbenhoft DP; Marvin-Dipasquale M; Swarzenski CM
    Environ Pollut; 2008 Jul; 154(1):124-34. PubMed ID: 18242808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetland influence on mercury fate and transport in a temperate forested watershed.
    Selvendiran P; Driscoll CT; Bushey JT; Montesdeoca MR
    Environ Pollut; 2008 Jul; 154(1):46-55. PubMed ID: 18215448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrate removal from eutrophic wetlands polluted by metal-mine wastes: effects of liming and plant growth.
    González-Alcaraz MN; Conesa HM; Álvarez-Rogel J
    J Environ Manage; 2013 Oct; 128():964-72. PubMed ID: 23892281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the major source and sink of methylmercury in the Florida Everglades.
    Li Y; Yin Y; Liu G; Tachiev G; Roelant D; Jiang G; Cai Y
    Environ Sci Technol; 2012 Jun; 46(11):5885-93. PubMed ID: 22536798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil.
    Beckers F; Awad YM; Beiyuan J; Abrigata J; Mothes S; Tsang DCW; Ok YS; Rinklebe J
    Environ Int; 2019 Jun; 127():276-290. PubMed ID: 30951944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylmercury and dissolved organic carbon relationships in a wetland-rich watershed impacted by elevated sulfate from mining.
    Berndt ME; Bavin TK
    Environ Pollut; 2012 Feb; 161():321-7. PubMed ID: 21705118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The burning question: does burning before flooding lower methyl mercury production and bioaccumulation?
    Mailman M; Bodaly RA
    Sci Total Environ; 2006 Sep; 368(1):407-17. PubMed ID: 16263153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methyl mercury production and loss in Arctic soil.
    Oiffer L; Siciliano SD
    Sci Total Environ; 2009 Feb; 407(5):1691-700. PubMed ID: 19081608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylmercury cycling in High Arctic wetland ponds: sources and sinks.
    Lehnherr I; St Louis VL; Emmerton CA; Barker JD; Kirk JL
    Environ Sci Technol; 2012 Oct; 46(19):10514-22. PubMed ID: 22779785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total mercury, methyl mercury, and carbon in fresh and burned plants and soil in Northwestern Ontario.
    Mailman M; Bodaly RA
    Environ Pollut; 2005 Nov; 138(1):161-6. PubMed ID: 15936862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Legacy and fate of mercury and methylmercury in the Florida Everglades.
    Liu G; Naja GM; Kalla P; Scheidt D; Gaiser E; Cai Y
    Environ Sci Technol; 2011 Jan; 45(2):496-501. PubMed ID: 21158447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylmercury production in a chronically sulfate-impacted sub-boreal wetland.
    Johnson NW; Mitchell CP; Engstrom DR; Bailey LT; Coleman Wasik JK; Berndt ME
    Environ Sci Process Impacts; 2016 Jun; 18(6):725-34. PubMed ID: 27224550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of small-scale constructed wetland for water quality and Hg transformation.
    Chavan PV; Dennett KE; Marchand EA
    J Hazard Mater; 2007 Nov; 149(3):543-7. PubMed ID: 17693019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic Modeling of the Solubility and Chemical Speciation of Mercury and Methylmercury Driven by Organic Thiols and Micromolar Sulfide Concentrations in Boreal Wetland Soils.
    Liem-Nguyen V; Skyllberg U; Björn E
    Environ Sci Technol; 2017 Apr; 51(7):3678-3686. PubMed ID: 28248107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging investigator series: mercury mobility and methylmercury formation in a contaminated agricultural flood plain: influence of flooding and manure addition.
    Gygax S; Gfeller L; Wilcke W; Mestrot A
    Environ Sci Process Impacts; 2019 Dec; 21(12):2008-2019. PubMed ID: 31617529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk of inundation to coastal wetlands and soil organic carbon and organic nitrogen accounting in Louisiana, USA.
    Zhong B; Xu YJ
    Environ Sci Technol; 2011 Oct; 45(19):8241-6. PubMed ID: 21863798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylmercury declines in a boreal peatland when experimental sulfate deposition decreases.
    Coleman Wasik JK; Mitchell CP; Engstrom DR; Swain EB; Monson BA; Balogh SJ; Jeremiason JD; Branfireun BA; Eggert SL; Kolka RK; Almendinger JE
    Environ Sci Technol; 2012 Jun; 46(12):6663-71. PubMed ID: 22578022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.